
Course Name: Optimization Theory and Algorithms 

Professor Name: Dr. Uday K. Khankhoje 

Department Name: Electrical Engineering 

Institute Name: Indian Institute of Technology Madras 

Week - 08 

Lecture - 58 

 

Solving least squares using SVD 

So, now I am going to tell you about one of the most popular ways of solving this system of 

equations. Again, this is probably something that you have done in linear algebra, but it gets used 

a lot in optimization as well, which is using the SVD. Ok. Many of you who have done linear 

algebra have not done SVD. So, this will be a bit of a revision. Anyone here who has not solved 

this using SVD? Yeah, you can raise your hand, it is ok. I am expecting most of you to raise your 

hand over here. Good. 

 

So, this is going to be fun because this is a really useful tool. So, my matrix 𝐴 over here... Every 

matrix has an SVD, that is the good news, right? So, I am going to write this as 

𝐴 = 𝑈𝛴𝑉𝑇 

That is the singular value decomposition. This matrix 𝐴 is 𝑚 × 𝑛. My input matrix is 𝑚 × 𝑛, 

right? For now, we will keep it general; it could be tall, fat, square, whatever. 

What is 𝑈? 𝑈 is 𝑚 × 𝑚, something more about it: it is an orthogonal matrix. All the columns are 

orthogonal to each other, right? It forms, therefore, if they are orthogonal with respect to each 

other, what is the other nice property that you get out of it? It is a basis for ℝ𝑚. Any vector in 𝑚-

dimensional space can be written in terms of the columns of 𝑈. What about 𝛴? This guy is size 



𝑚 × 𝑛, and what are its properties? It is a diagonal matrix. It may not be square, but it is a 

diagonal matrix, and the diagonal entries are the singular values, right. Similarly, this is 𝑛 × 𝑛, 

𝑉, and 𝑉 is also what? Orthogonal matrix, ok. It is an 𝑛 × 𝑛 orthogonal matrix; therefore, we 

also have a nice basis for ℝ𝑛, right? 

 

So, this is 𝜎𝑖, and all the singular values, regardless of what the matrix is, are greater than or 

equal to 0. There is never a negative singular value, ok. So, if it is a tall matrix, this is how 𝛴 is 

going to look like when 𝑚 > 𝑛, and if 𝑚 is less than 𝑛, then it is going to look like this: 

𝛴 =

[
 
 
 
 
𝜎1 0 … 0
0 𝜎2 … 0
0 0 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝜎𝑛]

 
 
 
 

 

This is how the 𝛴 matrix looks. Ok. So, now let us look at this equation that we are trying to 

solve: 𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏. So, let us look at 𝐴𝑇. What is 𝐴𝑇𝐴? 𝐴𝑇 going to be, when we apply the 

transpose operation, everything slips around. Right? (𝐴𝐵𝐶)𝑇 = 𝐶𝑇𝐵𝑇𝐴𝑇. So, let us write down 

𝐴𝑇𝐴: 

𝐴𝑇𝐴 = 𝑉𝛴𝑇𝑈𝑇𝑈𝛴𝑉𝑇 

Can this get simplified any further? 𝑈𝑇𝑈 is the identity matrix, ok. So, this becomes: 

𝐴𝑇𝐴 = 𝑉𝛴𝑇𝛴𝑉𝑇 

What will happen to 𝛴𝑇𝛴? It is going to be a square, of course, it is going to be square. Anything 

else that we can say about it? It will be diagonal. The singular values will be sitting on the 

diagonal as what? 𝜎𝑖
2. So, 𝛴𝑇𝛴 is the square of the singular values. So, 𝛴𝑇𝛴 will be a diagonal 



matrix. The size of 𝛴𝑇 is 𝑛 × 𝑚, and so 𝛴𝑇𝛴 is 𝑛 × 𝑛, right? So, this is 𝑛 × 𝑛, and that makes 

sense because 𝑉 and 𝑉𝑇 are anyway 𝑛 × 𝑛. 

 

So, everything, all the sizes are consistent, right? So, that is one check. Ok. So, now we are 

looking at the equation 𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏, that was what I was trying to solve. Now, let us plug in 

what we have done. So, 𝑉𝛴𝑇𝛴𝑉𝑇𝑥 = 𝐴𝑇𝑏. 

So, that becomes: 

𝑉𝛴𝑇𝛴𝑉𝑇𝑥 = 𝑉𝛴𝑇𝑈𝑇𝑏 

What can we do next to simplify this? There are a lot of extra terms over here. What would you 

do? Remember, these are not scalars that I can just knock off a common factor on both sides, 

right? One suggestion is pre-multiply, I mean, left-multiply by 𝑉𝑇, because for an orthogonal 

matrix, the inverse is the transpose, right? Ok. So, left-multiply by 𝑉𝑇, that is going to give me: 

𝛴𝑇𝛴𝑉𝑇𝑥 = 𝛴𝑇𝑈𝑇𝑏 

Now, the question is, is this invertible? It depends, right? So, first of all, what are they? 𝛴𝑇𝛴 is 

𝑛 × 𝑛, right? It is square and of size 𝑛 × 𝑛, and the entries of this are what? 𝜎𝑖
2, for 𝑖 = 1 to 𝑛. 

Now, if this is a tall matrix and full column rank, what does it mean for the singular values? All 

are non-zero, right, up to 𝜎𝑛. Ok, so if this is a tall matrix and full column rank, then 𝜎𝑛 ≠ 0. 

In that case, this matrix is invertible, yeah. So, let us flip this guy around. I am going to get: 

𝑉𝑇𝑥 = 𝛴𝑇𝛴−1𝛴𝑇𝑈𝑇𝑏 

Can I still simplify it further? I am interested in 𝑥. Left-multiply by 𝑉, so that 𝑉𝑉𝑇 goes away. 

So, then I am left with: 



𝑥 = 𝑉𝛴𝑇𝛴−1𝛴𝑇𝑈𝑇𝑏 

So, remember, you can see why full column rank is absolutely critical because without that, I 

cannot push this guy to the right-hand side; I am stuck. Right? So, full column rank is allowing 

me to write down 𝑥 in a closed-form expression. Is this term underlined over here going to be 

something simple? Right? 𝛴𝑇𝛴−1 is a square matrix, and what are the entries? 1/𝜎𝑖
2, that is 

getting multiplied by 𝛴𝑇. What will I be left with? 1/𝜎𝑖, kind of thing. But we have to do it a 

little carefully because I am multiplying a square matrix by a fat matrix. 𝛴𝑇 is now a fat matrix, 

right? Now, 𝛴𝑇 is something that looks a little bit like this. So, I am going to write this as 𝑉 

remains as it is, this term underlined is what I am going to call diagonal inverse, roughly 1/𝜎𝑖, 

ok. 

 

And this, I am going to write it in a little bit of a different notation: 𝑈1. Now, why am I calling 

this 𝑈1? It is because this guy is like this, right? 𝛴𝑇 is like this, and when it gets multiplied by 

𝑈𝑇, what will happen? I am going to have a whole bunch of zeros get multiplied by the rightmost 

columns of this 𝑈𝑇. So, what I will be left with are the first 𝑛 columns of 𝑈𝑇. So, this 𝑈1 is what 

I am calling the matrix which is found by taking the first 𝑛 columns of 𝑈. 

So, here is my solution which comes from SVD with a simple manipulation of the first 𝑛 

columns of 𝑈⊤ (no, it should be of 𝑈). So, let us have a look at this. These are the columns of 𝑉, 

𝑣1 up to 𝑣𝑛. Diagonal, so this is going to be 
1

𝜎1
 up to 

1

𝜎𝑛
. And then I have something that is what is 

going on over here. You can also write this; you can open this up in terms of what is very 

popularly called as the outer product notation, which will make it very, very simple. 

So, let us write that down over here. 𝑛 = 1 to 𝑛. This 
1

𝜎𝑖
 is a scalar, it is going to pop out 

1

𝜎𝑖
, and 

𝑢𝑖
⊤ is getting multiplied by 𝑏. So, before I write this, let us just get some intuition. Let us start 



from the rightmost side. I have a whole bunch of row vectors that are getting multiplied by 𝑏, 

and those are going to form scalars. 

Those scalars are then getting multiplied by 𝑣. Right. So, imagine if this whole thing over here 

should boil down to what? A scalar, a vector, or a matrix? It should boil down to a column 

vector. Once I get a column vector, that is getting multiplied by a matrix 𝑉. So, in terms of linear 

combination, how am I interpreting this? 𝑥 is a linear combination of the 𝑉’s with some 

coefficients. 

Now, all we are trying to do is interpret what those coefficients are. So, I am going to get 
1

𝜎𝑖
, and 

you notice this is going to be 𝑢𝑖
⊤ ⋅ 𝑏. This is my coefficient, and that is simply getting multiplied 

by 𝑣𝑖. So, this is my solution to the least squares. This is like the ideal textbook solution that 

starts with the SVD, you work it through, and you end up like this. 

This turns out to be hiding a lot of important points over here, which, from a numerical point of 

view, will make or break your solution. So, now let us have a look at that. I have written 𝑛 over 

here because we said that the matrix had full column rank. 

So now let us make things a little bit more interesting. This summation over here, I can write it in 

a way that makes things a little bit more realistic. In this entire setup 𝐴𝑥 = 𝑏, where is noise 

appearing? 𝑏, right? Because my 𝐴 ⋅ 𝑥 was my linear model, 𝑥1 + 𝑥1 ⋅ 𝑥2 ⋅ 𝑡, whatever, right? 

That is the model part. 𝑏 is where I make a measurement, and that measurement can have some 

noise. So, if I had noise in my measurements, who is the most dangerous guy, 𝜎1 or 𝜎𝑛? I hear 

𝜎𝑛, anybody else? So, where is the noise sitting now? The noise is hiding in this guy, right. So, 

who is the most dangerous guy? Who? 

 

Sigmas are always in decreasing order; 𝜎1 is highest, 𝜎𝑛 is smallest. So, 𝜎𝑛, right? Because 𝜎𝑛 is 

the smallest guy, and it is in the denominator. So, the way to see this is, I can just write this as 



∑
1

𝜎𝑖

𝑛−1

𝑖=1

𝑢𝑖
⊤ ⋅ 𝑏 ⋅ 𝑣𝑖 +

1

𝜎𝑛
𝑢𝑛

⊤ ⋅ 𝑏 ⋅ 𝑣𝑛. 

Let us say that my condition number 𝜅 was 104 and 𝜎1 was 1. Therefore, 𝜎𝑛 is how much? 10−4, 

this is my condition number. This is a reasonable condition number; it is not something very bad, 

right. So, what is going to happen now in this term 
1

𝜎𝑛
⋅ 104 ⋅ 𝑏? I can write it as 𝑏0 + 𝛿, right? 

This noise is inside 𝑏. You never have access to it separately. The 𝑏 is a noisy measurement; it 

has some true value and some measurement, and you can never split the two. You get it as a 

wholesale deal. 

So, you notice what will happen now. This 𝑏, which I have written as 𝑏0 + 𝛿, that 𝛿 is getting 

multiplied by 
1

𝜎𝑛
, which is 104. So, okay. That is one noise term. And on the other hand, look at 

the higher singular values, which you were so happy about. 𝜎1 was 1; that is forming the first 

half of the solution, the first part of the summation 
1

𝜎1
, no problem. But it is competing against 

104 ⋅ 𝛿 and the noise. So, this noise over here in the solution is going to swamp your true 

solution. 

Okay, so when you write this, it is one of the major advantages of writing the solution using the 

SVD: you can immediately see which is the guy who is going to corrupt your solution the most. 

The smallest singular values are the ones that are going to corrupt and give you the maximum 

error in your solution. If you had done, for example, Gaussian elimination or Cholesky, 

whatever, you would not be able to see, "Oh, this is what is happening!" 

I mean, there are of course many strategies over here. Supposing you are in charge of controlling 

the error, what would you do? The simplest strategy is, let us knock off the lowest singular 

values, meaning I exclude them from the solution. 

It is a very popular technique in engineering, and the name for it is, therefore, truncated SVD. 

That is where the idea comes from: that if I have some singular values which are very low, they 

are going to amplify the error. Rather than face that error, I get rid of it. There is going to be 

some inaccuracy now that is coming, right? So, reduce error by... Here I gave you the example of 

just the highest, I mean 𝜎𝑛 being very small, but you could have the last several sets of singular 

values could be very bad. So, that is why truncated does not mean just one; you could truncate it 

by a few terms, right? 



 

So, this would then be written as 

∑
1

𝜎𝑖

𝑛

𝑖=1

𝑢𝑖
⊤ ⋅ 𝑏 ⋅ 𝑣𝑖. 

So, this is my 𝑥⋆. By the way, this solution which I wrote over here goes by another very 

common name in the literature. Does anyone want to guess what the solution is called? It is 

called the pseudo-inverse, called the pseudo-inverse because it is not a square matrix that I 

inverted; therefore, it is not the inverse. But it has properties that are almost as good as the 

inverse because I basically minimized 𝐴 ⋅ 𝑥 − 𝑏. So, this is also called the pseudo-inverse and 

this is our truncated SVD. 

So, from a linear algebra point of view, can you tell what just happened over here? The hint is 

that we said that 𝑥 is an 𝑛-dimensional vector; therefore, I should be able to express it in the 

basis of which? 𝑈 or 𝑉? 𝑉, right? Any vector should be expressed as a linear combination of my 

𝑛 basis vectors. My original solution had... Did it have all 𝑛 basis vectors? The pseudo-inverse 

did. 

The truncated solution, however, does it live in the same space? No, right. So, as error is coming, 

the singular values which are lowest in magnitude are corrupting that part of the subspace, which 

is corresponding to the highest singular index, right? 𝜎𝑛. So, you notice that this guy, this 

truncated solution, has no components of 𝑥 along 𝑣𝑛, and if I truncate more, it will have nothing 

along 𝑣𝑛−1, right. So, that is how it is. 

There are tricks and techniques in signal processing where what they will do is, you say that I 

know that there are certain dimensions, for example, 𝑣𝑛, 𝑣𝑛−1, 𝑣𝑛−2, where I dare not use my 

data. If I use my data, my error is going to blow up. So, I do not estimate that part of the solution 



from the data; I estimate that part of the solution using some a priori information about the 

problem. This is like things like compressive sensing and all of these ideas. What can be 

determined from data, you nail it down using the truncated SVD. What is left, you use your other 

information about the problem. For example, I may – and this is a very real-life example – I may 

say that the solution is sparse in the DFT domain. 

Natural images, for example, if you take an image of a dog, cat, or whatever, and take its DFT 

and look at the coefficients, you will find out most of the coefficients are actually... It is just a 

property of natural images. But if you look at it in the pixel domain, it is a full image. There is 

nothing that you can discard. If I start dropping out some pixels, you can see this is a pixelated 

image. On the other hand, take its DFT and look at its coefficient. You will find out that a large 

number of coefficients are actually very low in magnitude. 

If you set them to 0 and then take the inverse DFT, the image looks almost the same. This is at 

the heart of, I mean in a very crude way, at the heart of JPEG and all that. You can get rid of 

information like this without losing the picture quality. So, I get some solution. Now, supposing I 

transform it into the DFT and I try to reduce the coefficients, that is how I can set these extra 𝑣𝑛, 

𝑣𝑛−1, you know, in some way. These are the kind of tricks and techniques people will use in 

signal processing, image processing, and so on. But having this idea of the singular vectors and 

what noise is doing to what, then you are in command of the situation, okay? 

These dimensions are fine. For example, 𝑣1, 𝑣2 are fine. Noise is not going to bother me. 𝑣𝑛, 

𝑣𝑛−1 is going to be dangerous. Let me not let noise predict that part of the solution. This is how 

you can... Keep this in mind when you look at your course project papers. You will find tricks 

like this being played all the time. 

Any other questions on this truncated SVD or SVD in general for those of you who saw the SVD 

solution for the first time? Another way in which you find this expression which I have written 

over here, 𝑢𝑖
⊤𝑏, is it a scalar or a vector? It is a scalar. 𝑣𝑖 is obviously a vector. Can I rearrange 

the order of scalar and vector? Who cares, right? So, I could also write this as 
1

𝜎𝑖
𝑣𝑖 ⋅ 𝑢𝑖

⊤𝑏. Does 

this bracket have any real meaning or can I skip writing that bracket altogether? I can skip it. 

So, I can also write it like this. Now, can I reinterpret this? Can I put a bracket like this now? Is it 

legal? It is perfectly legal. Now, what is the meaning of this now? So, I have written my solution 

as 𝑖 = 1 to 𝑟, 𝑥 = ∑
1

𝜎𝑖

𝑟
𝑖=1 𝑣𝑖 ⋅ 𝑢𝑖

⊤𝑏. What is the meaning of this thing that I have written now? It 

is a sum of rank-1 matrices because 𝑣𝑖 is a column vector, 𝑢𝑖
⊤ is a row vector, and their product 

is an 𝑛 × 𝑛 matrix, but it is a matrix of rank 1. How many such rank-1 matrices are there? 𝑟. So, 

I have written my solution as the sum of 𝑟 rank-1 matrices. I have just changed the brackets 

around, and I have got this rank-1 approximation going on over here. This is another very nice 

interpretation. 

For example, there are all of these rating problems, right? Netflix rating, that if a user has ranked 

these movies, can you guess what are the ratings that he or she would give to movies which they 

have not seen? In these kinds of problems, it ends up being a problem of completing an unknown 

matrix. I have some entries known and some entries unknown. Many times, that is written in 

terms of a minimum rank expansion of a matrix. 



So, tricks like this help you over here. If you wanted to write the 𝑥 in terms of the least number 

of rank-1 solutions, here it is sitting over here. Here, there are 𝑟 rank-1 matrices. If you wanted to 

reduce it to make it just 1, you just put 𝑟 = 1. So, this is sounding vague, but go look up ratings 

problems and matrix completion problems. So, this idea of using rank-1 matrices comes from 

here. 

Full rank? Yeah, which was the pseudo-inverse. Yeah, this was the 𝐴 has full column rank; this 

gave us the solution 𝑥⋆ = ∑
1

𝜎𝑖

𝑛
𝑖=1 𝑢𝑖

⊤𝑏𝑣𝑖. For the normal problem, not 𝐴𝑥 = 𝑏. Well, yeah, you 

could call it for 𝐴𝑥 = 𝑏 also, yeah. Okay, that is... Yeah, that is not invertible. I mean, then what 

happens? That 𝑆⊤𝑆 is not invertible, right? I agree with you. So, what you could do instead is 

this. So, it is a defective kind of a solution, but you know in engineering problems, you are 

desperate, and you want a solution which is somewhat close to what you want. 

So, this is what you can do. Well, if it is rank deficient, it will satisfy. If you keep aside the error 

part of it of the highest singular value. Actually, let us try that out. You can try that out. Take 

this, supposing 𝐴 is not full rank, take this solution and plug it into the normal equation, and we 

will just see: does it satisfy? 𝜎 will get multiplied by, yes. 


