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Linear least squares - Part 1 

Today we will look at least squares problems. I think the last time I just introduced it, but we did 

not get into the details of it. So, we look at least squares problems which as I mentioned are 

probably one of the most commonly found problems in engineering. So, there is linear least 

squares and non-linear least squares we look at both. And once you are done with that the next 

part of the course will be constraint optimization which will start after the quiz ok. So, let us look 

at least squares optimization. 

In terms of motivation, we do not need to re-motivate it. We had given two models if you 

remember. What was the first model? There was radioactive decay, right. There was one model. 

So, let me just write that one example down. So, this was example 1 was something like this. So, 

over here what was our 𝑡 was our measurement time and what would we call 𝑥 in plain English 

what would you call 𝑥 parameters of the model. Model and the other model that we had was for 

example, something simple like this. What is the difference between these two models? In terms 

of nomenclature the first model would be it is non-linear in the parameters right. 

So, this is a non-linear in the parameters and this is linear, loosely speaking we call it linear, but 

technically what should we call it? Affine I mean there could be a constant also over here which 

I have not mentioned. So, these are the two broad families of problems once you have got a 

model the model is not going to come to you from optimization the model is going to come to 

you from your domain knowledge ok. And as I mentioned in the very first lecture this is where 

your modeling accuracy comes into play ok. Having done this we had written the problem in the 

following way what is the problem to be solved right. let us say I take 𝑚 measurements for each 

measurement I have a model and I have the models prediction and this I have to try to what bring 

as close to each other as possible right that is the basic idea. 

So, if the measurement is let us say some 𝑦𝑗 correspondingly the prediction is going to be 𝑦𝑗(𝑥). 

This is my you could say my 𝑗th measurement and what I am going to do is I am going to square 

this, 𝑗 is going to go from 1 to 𝑚 right and this is what I want to minimize as much as possible 

right. So, what is the tuning knob in my hand? I mean it is a very basic question, but you will be 

surprised how often students get tripped up in this. What is the tuning knob in my hand? 𝑥. So, I 

will write this as this arg min
𝑥
. 

This just tells me that 𝑥 is the variable of optimization which is in my hand and after I solve this 

𝑥̂, 𝑥̂ here means it is the best 𝑥 right ok. And so, this is why we call this a least squares 

optimization. I think we had spoken roughly until this point. Now, to progress any further we 

obviously need to know some or not know, but do some calculus on this so that we can take 

derivatives set them to 0 look at second derivatives and so on ok. So, there is a because these 



problems occur so frequently there is a standard terminology for solving or mentioning most of 

this. 

So, each of these. So, let me just make a mention over here this is total number of measurements 

ok. Is there a common word that we use to denote the expression inside this red bracket? In the 

optimization world this expression within the red bracket what do we also call? Not quadratic, a 

general word objective function or another very common word is cost function ok. So, cost 

function in many papers you will in fact see this written as 𝑐 ⋅ 𝑓 and you will wonder what does 

this 𝑐 ⋅ 𝑓 this means cost function or objective function ok. And the common symbol for it let us 

say let us call it 𝑓(𝑥). 

 

Now, when I say 𝑓(𝑥) you should realize that 𝑥 here is a vector or a scalar, it is a vector because 

there can be many parameters in the model. So, the common way of writing this expression is 

this one term over 𝑚 is called a residual. So, let us say 𝑟𝑗(𝑥) = 𝑦𝑗 − 𝑦(𝑥𝑗). I am going to call 

this a residual. Why residual? Because that is the residue left when I match my data with my 

prediction ok and the common notation is this 𝑟𝑗(𝑥). So, if I have all of these residual quantities 

are there for each measurement I have these residuals, I can as well stack it and make a vector 

out of it right. 

So, the residual vector then is simply has the expression 𝑟(𝑥) ok. So, 𝑟(𝑥) is going to be a 

vector. So, 𝑟1(𝑥), 𝑟2(𝑥), … , 𝑟𝑚(𝑥) because there are 𝑚 measurements and transpose. ok and the 

common expression is written like this ok. So, 𝑗 = 1 to 𝑚 𝑟𝑗(𝑥) this half is introduced just to 

make math a little bit easier otherwise you will have a 2 floating around everywhere. 

So, do not worry too much about it ok. Now how many obviously, I am going to call 𝑥 as a 𝑛 

dimensional vector. So, 𝑥 ∈ ℝ𝑛 right. So, let us look at the numbers over here. If I have 𝑚 ≥ 𝑛 

ok. 



So, here is where we need to first operate from common sense. 𝑚 ≥ 𝑛 means what? I have more 

measurement than variables is that does from a common sense point of view is that a good place 

to be or a bad place to be? It is a good place to be in because you have enough measurements are 

there I mean if I have like 10 parameters of the model and one measurement and there is that 

famous saying I do not know who that physicist is that if you give me 3 points I can fit an 

elephant for you right. Anything any model will fit it if I have less data and too many parameters 

right. So, this is where you want to be and this is also the more realistic case right. What about 

this? There may be some situations where data may be extremely expensive. 

For example, the example I mean with the Geiger counter right radioactive measurements you 

cannot send a person to make too many measurements. So, you have less number of 

measurements right. So, there are situations when this also happens this is more challenging and 

the uniqueness of the solution all of these properties are questionable ok. So, in principle this is 

the situation where you can have infinite solutions ok. When you have infinite solutions then 

some solutions come with some special properties right. 

So, let us take a very simple case something that you have all studied from class 11. When you 

have a linear system of equation that means a fact matrix, fact matrix has infinite solutions. Is 

there any special solution out of these infinite solutions? I have infinite number of solutions that 

is that everyone agrees on, but is there any one solution which has a special property? there is a 

minimum norm solution that is possible. Of all the solutions you can find one solution which has 

minimum norm ok. Minimum norm and we will discuss this at the end of this class when we 

look at linear least squares. 

 

Is there any from an engineering point of view is there any special appeal for a minimum norm 

solution? Minimum norm can often mean minimum energy. So, that has a desirable aspect to it. 

So, even though you may have infinite solutions you may be still be able to arrive at a minimum 

norm solution and minimum norm can be for example, minimum energy for a physics 



application for some sensor network application it may be minimum power of the nodes 

whatever right. So, those solutions are still possible. There is another very interesting area of 

research now it is about I would say 10 to 15 years old which is called compressive sensing 

which is a very beautiful subfield of signal processing where you can show there are theoretical 

guarantees for this that you in spite of 𝑚 being less than 𝑛 you can arrive at a unique solution ok. 

It is so this is a very nice possible topic for your course project ok. Many students in the past 

iterations have enjoyed this topic. So, just telling you it is very counterintuitive, but it is good 

fun. But for now this is the case that we are going to look at where common sense dictates there 

is more measurements than the number of variables over here. So, with my with my residual 

vector 𝑅 defined this way is there yet another very compact way of writing this cost function 

𝑓(𝑥) instead of this laborious summation that I have written can I write it in some other way? 

Half norm 𝑟 square 𝐿2 norm. 

 

So let us look at these two objects over here. So I have at the top over here. Now 𝑟(𝑥). Is 𝑟(𝑥) 
like a function also? Does it take an input and give an output? So what is the input? Dimension 

of the input? 𝑛. 𝑛 variable 𝑥 enters into this guy. 

What comes out of it? How many measurements do we have? 𝑚 right. So, it is a vector right. 

Similarly, 𝑓(𝑥) that is our objective function or cost function. What does it take as input? ℝ𝑛 

comes in and out comes simply ℝ right. So, which one of these guys is going to have a Jacobian 

a non-trivial Jacobian? It is going to be 𝑟. 

Now finally, when I am when I am looking at 𝑓(𝑥) which I have written over here I want to if I 

want to calculate a stationary point of 𝑓 what am I going to be looking at? Given 𝑓 you want a 

stationary point what is the quantity that I need to look at? ∇𝑓 right. 



Now, ∇𝑓 because 𝑓 is written in terms of this 𝑟 it will be it will make our life a little simpler if 

you look at anticipate that what is going to happen when I start differentiating 𝑓 with respect to 

𝑥1 𝑥2 up to 𝑥𝑛. I am going to see a norm 𝑟 square that is going to appear everywhere. So, before 

we jump into ∇𝑓 let us just look at the Jacobian of 𝑟 it will help us simplify the math because I 

have to take a derivative of 𝑟 anyway and a derivative of 𝑟 is also known as Jacobian. So, let us 

look at. So, remember we had a if I give you a function 𝑓 and I ask you ∇𝑓, it was a column 

vector like this. Everyone remembers this, but when I gave you a function like 𝑟 which is ℝ𝑛 →
ℝ𝑚, how did we write the Jacobian of 𝑟? sorry small 𝑟 there was a transpose operation if you 

remember right. 

 

So, every row of the Jacobian was what? ∇ of each of those residual terms right. So, let us write 

down. So, is this right right? So, I have 𝐽𝑖,𝑗. So, 𝐽 is now the row, 𝑖 is the column right. So, if I am 

keeping the row number fixed and I am changing the columns right, I am getting ∇𝑟1 is one row, 

∇𝑟2 is one row right. So, if you visualize it, it is like this. 

∇𝑟1
𝑇. So, it is going like this ∇𝑟2

𝑇 is going like this. So, that is how my matrix looks like and if 

you wanted it further explicit 𝑟1/ ∂𝑥1, 𝑟1/ ∂𝑥2. That is how it looks ok. So, you already know 

𝑓(𝑥) =
1

2
∑ 𝑟𝑗
𝑚
𝑗=1 (𝑥)2. Now, I want to calculate ∇𝑓 right for calculating ∇𝑓 what was the one 

thing that I need to do calculate for example, 
𝑑𝑓

𝑑𝑥𝑖
 right. 

So, I can take this expression over here and start differentiating 𝑗 = 1 to 𝑚. So, one common 

mistake again lot of time students make is that mixing up the variable of summation and the 

variable of differentiation. So, here the dummy index for the summation is 𝑗 right. So, I should 

take the derivative for I mean this the subscript for 𝑥 should not be 𝑗 because I will land up into 

that is why I take an 𝑖 over here very common mistake, but it messes you up. 



So, right. So, if I take this derivative what happens? I am taking the derivative of this expression 

over here. What happens to my 2? 2 goes away right. So, this is will the summation still be 

there? Has to be there because each 𝑟 depends on all the 𝑥’s. So, it is going to be there. 

So, this summation remains there ok. I have a 𝑟𝑗(𝑥) and I have a 
𝑑𝑟𝑗

𝑑𝑥𝑖
(𝑥) and I can just for 

simplicity rearrange them this way. Now, this is 
𝑑𝑓

𝑑𝑥𝑖
, I like this I want from 

𝑑𝑓

𝑑𝑥1
 𝑥2 all the way up 

to 𝑥𝑛. What is this guy reminding you of? It is looking like exactly like the term of the Jacobian 

here, it is the it is looking like the 𝑗th column. Right and I have a 𝑟𝑗 over there. So, is there a nice 

way by which we could simplify this expression? It is looking like the column of a I mean you 

look at 𝑗 is the guy that is varying in this expression over here, 𝑗 is the variable of summation 𝑖 is 

remaining constant, ok. 

 

So, over here in if 𝑖 is remaining constant which is 𝑥 that is corresponding to for example, let us 

get blue over here. One column like this because over here what is changing 𝑟1 𝑟2 𝑟3, but 𝑥2 is 

remaining the same. So, it is a column of my Jacobian matrix. So, I am multiplying the column 

of a Jacobian matrix, but when I multiply a matrix with a vector what do I multiply a row of the 

matrix with a column vector. So, this is not exactly like that with 𝑗, but it is with 𝑗𝑇. 

So, I take 𝐽𝑇 this blue circle thing will become a row vector and that is getting multiplied by 

which vector? 𝑟, its components are there 𝑟𝑗 𝑟1 𝑟2 right. So, this is so, this will simply be 𝐽𝑇 

multiplied by 𝑟. Right if you want it to be little bit more explicit you would call this because they 

are all functions of 𝑥 ok. So, this is why we spent like 15 seconds trying to compute this Jacobian 

because it shows up very neatly over here. If I did not have this I will have to write this partial 

summation I mean the summation with partial derivatives carried forward everywhere 

everywhere at some point I am going to interchange the 𝑗 and 𝑖 and my answer is going to go 

wrong right. 



So, this is kept it this is kept it. So, that I have got my expression for ∇𝑓 any questions on this 

anyone not clear on. 


