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BFGS method 

So now let me, it seems like leaving things incomplete, but actually the description of the quasi-

Newton method is complete. Why? Let us try to just quickly summarize how we would start. So 

at step 0, what do I like with any algorithm? What is step 1? Pick a starting point. Pick some 𝑥0. 

Now notice this BFGS relation. Can I compute it from scratch? For example, at 𝑘 = 0, what do I 

need in order to kick start this expression? I need 𝐻0. 

 

Somehow you need to tell me 𝐻0. So, I am going to say pick 𝑥0 and estimate 𝐻0, ok. So, maybe 

you need to pay a one-time price to get 𝐻0, ok. Next, what would I do? Correct, that is one 

choice. 

If it were very expensive, then maybe I may need to do some approximation there also, but 

otherwise 𝐻0 could come from the Hessian, ok. Then what do I need to do? I need to do To go 

from 𝑥0 to the next place what do I need? I need 𝛼, I need 𝑝, right. So, for 𝛼 what is the standard 

procedure? In exact line search with Wolfe conditions. Ok, I got it. Do I know which direction to 

go to? I do. 

How do I know it? I calculated it right at the beginning, right. So, direction is simply 𝑝𝑘 =
−𝐻𝑘∇𝑓𝑘, right. So, if you notice right at the beginning, where did it go? Yeah, here, 𝐵𝑘

−1∇𝑓𝑘. 

Now, 𝐵𝑘
−1 the notation I have got for it is is this, ok. So, this will allow me to go to the, right. 



So, that means go to 𝑥𝑘+1, right. What should I do next? Compute, ok. Before I do that, should I 

do something else? I have moved to the next point. Correct, we should always have a check for 

convergence, right. So, I would say for example, check ∥ ∇𝑓𝑘 ∥, ok. 

If it is low enough, end. Else what should I do? Should I go to step 2, step 3, what should I do? I 

need to update my 𝐻 because unless I update my 𝐻 I cannot compute the direction which is 

sitting in step 3 right. So, here is else use BFGS to get 𝐻𝑘+1 then 2 and 3 right. So that is our 

quasi-Newton method. Did I ever need to compute a Hessian? I never needed to compute a 

Hessian, right? Because my BFGS relation for example, what does it need? This guy is coming 

from the previous step, right? 𝑆𝑘 is coming from what? The difference of the previous two, right? 

𝑆𝑘 was defined as? we had it over here right, difference of iterates 𝑥𝑘+1 − 𝑥𝑘. 

So, if I know where I am and if I know my previous step I can calculate 𝑆. Similarly, 𝑦 I can 

calculate right and so I have my 𝑆𝑘, I have my 𝑦𝑘 and what else, 𝜌 is given over here. So, 

basically this whole expression can be computed. 𝑆𝑘𝑆𝑘
𝑇, quick check, what is 𝑆𝑘𝑆𝑘

𝑇 into scalar 

vector matrix? rank one matrix and so this entire expression is a matrix. So, given the previous 

𝐻𝑘 I can update this calculate the new 𝐻 and move on, ok. 

You will find actually there is something even more popular than BFGS in the relation and 

particularly in MATLAB you will find there is something called LBFGS. L stands for a low 

memory version of the BFGS which is extensively used in optimization. where you do not want 

to do, where you want to do Quasi-Newton method this is one. So, these letters BFGS they stand 

for the founders of this method, ok. So, the one thing that we left kind of hanging is this over 

here. 

 

We never, so far I have not shown you or given you a guarantee that this 𝐵 that I get is going to 

be positive definite. BFGS is fixing the remaining sort of degrees of freedom, but how do I 

ensure that it is positive definite that is still left to me. Now, it turns out, I will just, we will work 



it out right now. Our Wolfe conditions, they save the story in innumerable examples and this is 

one more of them. So, it is a very cute little result. 

Let us show it to you over here. It says that if 𝛼𝑘 satisfies the Wolfe condition in particular the 

curvature condition, then 𝐵𝑘+1 is always surprising result, right. And it is not only surprising, the 

proof is also very simple. So, what was the curvature condition? If you remember the English 

you will be able to tell. What was it? Remember we had something like this. 

So, what did it say? This was my 𝜙(𝛼). I said that the slope at 𝜙′(𝛼) should be less than what? 

𝐶2 times 𝜙′(0). If you remember it in words, you will always remember what is going on over 

here. Now 𝜙′(𝛼), remember the way I have drawn this graph over here, 𝜙′(𝛼) is positive or 

negative? Negative, right? So and this is the curvature condition, not the strong curvature 

condition. So there is no absolute sign over here. 

 

So in order for me to write down this over here, I had to put a minus sign. So 𝜙′(𝛼) was what? 

∇𝑓(𝑥𝑘) + 𝛼𝑝𝑘
𝑇𝑝𝑘, right? And similarly for this we can write it over here. But in order to get the 

slope over here with a positive sign I had to put a negative, ok. That is how we had worked it out. 

So, basically what this would translate to is ∇𝑓𝑘+1
𝑇 𝑝𝑘 is greater than or equal to 𝐶2∇𝑓𝑘

𝑇𝑝𝑘. 

If you are little rusty on your curvature condition, this was a quick recap, ok. Now, supposing I 

subtract ∇𝑓𝑘
𝑇𝑝𝑘 from both sides, what will I get? Left hand side is going to give me ∇𝑓𝑘+1 −

∇𝑓𝑇𝑝𝑘 greater than or equal to, I am going to write this as (1 − 𝐶2) ⋅ (−1) ⋅ ∇𝑓𝑘
𝑇𝑝𝑘, ok. It should 

be 𝐶2 − 1, I am writing it as (1 − 𝐶2) ⋅ (−1), ok. What is ∇, is this ok with everyone? We just 

subtracted over here, subtract ∇𝑓𝑘
𝑇𝑝𝑘 from both sides. What is this left hand side? ∇𝑓𝑘+1 − ∇𝑓 is 

what? 𝑦𝑘. 

So, this is 𝑦𝑘
𝑇𝑝𝑘. So, when I wrote this expression, the first expression, it was intuitively that this 

slope should be less than, I mean the slope at this point 𝛼 should have reduced to less than 𝐶2 



times the original slope. Magnitude of this slope. Magnitude, right. And to get the magnitude I 

multiplied by minus sign to get it as a positive number. 

These are all valid descent directions. Correct. These are all valid descent, this is a valid descent 

direction. That is the intuitive way to remember. So, I get 𝑦𝑘 + 𝑦𝑘
𝑇𝑝𝑘 on the left-hand side. 

What is 1 − 𝐶2? Is it greater than 0 or less than 0? It is greater than 0, right? Because 𝐶2 was 

between 0 and 1. So, this is greater than or equal to 0. What about this guy? 𝑝𝑘 is a legit descent 

direction. So, ∇𝑓𝑘
𝑇𝑝𝑘 is less than 0 multiplied by minus 1, this is greater than or equal to 0, right. 

So, if I multiply this by a positive number 𝛼𝑘, what will I get, right? If I multiply by 𝛼𝑘, I am 

going to get 𝑦𝑘
𝑇𝛼𝑘𝑝𝑘, but 𝛼𝑘𝑝𝑘 is nothing but 𝑥𝑘+1 − 𝑥𝑘 which is 𝑠𝑘. 

So, this is 𝑦𝑘
𝑇𝑠𝑘 and we have seen that this is greater than or equal to 0, right. Now, if you look 

back at what we had said over 𝑠𝑘
𝑇𝑦𝑘 should be greater than 0, then this is going to be positive 

definite. 𝑠𝑘
𝑇𝑦𝑘, do I have that? 𝑦𝑘

𝑇𝑠𝑘, same thing, right. So, the secant equation was 𝐵𝑘+1
𝑇 𝑠𝑘 = 𝑦𝑘, 

right. And then when I left-multiplied by 𝑠𝑘
𝑇, I got 𝑠𝑘

𝑇𝐵𝑘+1𝑠𝑘 = 𝑠𝑘
𝑇𝑦𝑘 and we just showed that 

this is greater than 0. 

Actually there is one, it should not be, yeah this should, this is greater than 0 and it is a legitimate 

descent direction therefore this angle cannot be, they are all strict, strictly greater than because 

𝐶2 was, sorry 𝐶2 was in the open interval (0,1). So, this term cannot be 0. So, it is not greater 

than or equal to, it is greater than. So, implies that 𝑑𝑘+1 is. 

Correct. So, right. So, let us see. Well, it is at least true for And do I need it actually here we 

need to look at the proof, do I need it for other vectors that is something to think about. I will 

think about that. It is not clear to me looking at this BFGS relation whether or not that would be 

the case. 

Maybe it will be. Yeah, we need to look at this a little bit more. So, if I start with a positive 

definite 𝐻𝑘, will 𝐻𝑘+1 also be positive definite? Yeah, I do not want to make a casual comment. 

Let us look at this a little bit more carefully. The same matrix is the way. So, Wolfe conditions 

have helped us earlier also, it is helping us now also. 

So, whenever you do a backtracking line search, it is always a good idea for the termination 

condition of the backtracking to be one of the Wolfe conditions. So, this essentially completes 

our, you know, whatever description that we needed to learn about the quasi-Newton way, quasi-

Newton method, right? The recap is over here. We know, we have all the pieces in place. What is 

the design choice or you can say the place where you have room for innovation could replace 

BFGS by something else. The secant equation is going to be there that does not change. 

The remaining 𝑛2/2 − 𝑛 relations are going to come from something else. BFGS is one example 

of it. So, when you, this is another something for you to look at in your course project, choices, 

different ways of implementing quasi-Newton, this is one example, ok. and as we said this is 

super linear in convergence, ok. And as far as coding goes they are all relatively similar 

complexity. 

This is in fact simpler to compute than Newton because there is no Hessian computation 

involved, right, ok. So, what we have done, I mean if we just take a quick recap of the different 

line search methods that we have done. We have started with steepest descent, we looked at it in 



great detail, we move to conjugate and we move to the non-linear version which is non-linear 

conjugate gradient and then we looked at the Newton method and the quasi-Newton method. So, 

in terms of tools of optimization you have got a nice range of tools available with you depending 

on how difficult or computationally challenging the problem is you can choose one or the other 

method, ok. 


