
Course Name: Optimization Theory and Algorithms 

Professor Name: Dr. Uday K. Khankhoje 

Department Name: Electrical Engineering 

Institute Name: Indian Institute of Technology Madras 

Week - 07 

Lecture - 53 

 

Quasi newton methods 

Okay good, let us start with the feedback chips from yesterday. I think everyone had some of the 

other comment on our Hessian modification scheme. Looks like it generated a lot of interest. 

Again one student, I do not know the name and saying that, so remember we said we could take 

our matrix 𝐴 and add 𝜏 times the identity matrix to it. And we said that that definitely pushes all 

the Gershgorin disks to the right half plane and therefore we are saved. This student says that, 

We had a follow up suggestion I think from you that why not modify only those discs which 

were going into the left half plane instead of modifying all the discs. 

And the student feels that that cannot be done, it would be possible only if 𝐴 was in diagonal 

form. But that is not the case. The Gershgorin and disc theorem said that you can find the center 

for any matrix, it need not be a diagonal matrix. Any dense matrix the center is given by what? 

The diagonal element that is the center and the radius is coming from absolute value of the sum 

of the other elements. 

 

So as long as I move all the disks to the right half plane, I do not have to move all of the disks, 

only those guys which are have some spillover on the left half plane, it should work. So whoever 

this is should give a little bit more of a reasoning. Is everyone convinced by that argument? That 

we need not move all the disks, we should just move those disks which are, have the, give the 

possibility of a negative eigenvalue. To save the modified Hessian from poor condition number 



we make 𝛿 large, but if we make 𝛿 large therefore the value of 𝜏 increases. So how can we solve 

both problems with the same? Obviously, we cannot, this is classic engineering, it is a trade off. 

If you try to make the condition number better, you are adding more, you are modifying the 

matrix more. So, the deviation from the original problem is more, but you got a better condition 

number. So, you cannot win in both situations. I think I clarified this by the end of the class, but 

the question is still here, that Gershgorin simply mentions that the eigenvalue lies somewhere in 

the disk, but where and what exactly it is we do not know, right. So, this, supposing this was one 

of the, this is the origin. 

So, does this automatically imply that we have a negative eigenvalue? No, right? Because the 

eigenvalue could be sitting here. So, that is why Gershgorin is a very coarse tool. It is not, it is 

giving us a range. So, an eigenvalue could be here, in which case we are in trouble. But to be on 

the safe side, what you could do? If you shift this over here to something like this, then there is 

no chance of a negative eigenvalue, right? That is what we are doing. 

 

But as the student is observing that, we do not know exactly where this negative eigenvalue will 

be. So, it is a bit of an overkill and the cost is very low. So, that is the tradeoff. If the Hessian is 

being modified, this is a good question. Is not it similar to the quasi-Newton method where the 

Hessian is being approximated? In a sense the philosophy is similar, right? That we do not. It is a 

little bit, the Newton method is of course more expensive because first you calculate the Hessian, 

then you find out whether or not it is positive definite. 

So you already paid the price. In quasi-Newton you do not even attempt to do that. In quasi-

Newton you never compute the Hessian, you calculate an approximation of the Hessian. So in 

that sense they are not similar. How do we guarantee quadratic rate of convergence with the 

Hessian modification? And related question, I think this is Omkar. 



It was mentioned that 𝛿𝑖 = 𝜏 ⋅ 𝑖 gives the minimum norm, but as the other students suggested 

only negative eigenvalues changed, will that give a smaller norm modification? Yes, it would. 

So, how do we guarantee quadratic rate of convergence with this Hessian modification? So, this 

is a chapter 3 of our textbook discusses this quite in detail. So, in fact there is, Theorem 3.8 of 

Nocedal Wright? It gives you a, it is a theorem, again it is a tricky theorem because he himself 

does not give the proof. He refers you to yet another reference, right? But what he says is that if 

the Hessian modification. 

No. Yeah, okay. Should be back now. Is it okay? Okay. Yeah, so this theorem tells us that if the 

modification that I made to the Hessian each time has a bounded condition number, I still have 

quadratic rate of convergence. Okay, so that is what it is. 

But remember all of this discussion becomes kind of unimportant for one very simple reason and 

this is really the bottom line that you should take away from this class. As I approach the 

solution. As I come close to the solution, in fact even this quadratic rate of convergence of the 

Newton method, it is in a region close to the solution where the Hessian becomes positive 

definite. So, we do not have to worry about this. It is when I start far away from the solution is 

where I need to do this Hessian modification. But as I get closer, it is guaranteed to be positive 

definite. 

So, all of these tricks, they do not spoil the real convergence rate. And as I mentioned, I spoke 

only about Hessian modification. There are other tricks in the book next to this theorem about 

eigenvalue modification and so on. Lots of tricks are there which we will not discuss in detail. 

So, all right. So, as promised now we will start talking about our more economical alternative to 

the Newton method which is the quasi-Newton method. As I mentioned the claim to fame of this 

Quasi-Newton method is that it sits somewhere between the Newton method which was 

quadratic and then I have the steepest descent or conjugate gradient method this was linear and 

Quasi-Newton sits in between it is super linear ok. So, if I look at ∥ 𝑥𝑘+1 − 𝑥∗ ∥, this is the norm 

that I am looking at. So, as 𝑘 → ∞. What was the difference between super linear and linear? So, 

this is I can write it like this. 

So, if it is 0, what do I call it? Super linear and if it is 𝜇 where 0 < 𝜇 < 1 this is linear. So, slight 

difference between these two methods, ok. So, again the Newton method is built on like most 

things that we have studied in optimization, it is built on our Taylor’s theorem, ok. If I give you, 

let us start with a very simple high school discussion. If I give you two points, a scalar function 

𝑓(𝑥) and I give you 𝑥1, 𝑥2, what is the best model that you could construct? Could you construct 

a quadratic? No. 

I can construct, best I could do is straight line. In more sophisticated language, what is a straight 

line called? an affine function, right? Affine functions means a constant plus a linear term, right? 

So, strictly when you say a function is linear, it means it has no intercept, it goes through the 

origin, that is what you, that is what is called strictly speaking a linear function, ok. So, with two 

points you could do affine, three points you could do quadratic, I mean parabola or quadratic 

function, right? So, in the quasi-Newton method, the idea again is that I am going to construct 

models of my function at each point, ok. Because there is the word Newton in quasi-Newton, 

that model is going to be what order? Second order, that is why the, that is why quasi-Newton, 

ok. So, it is a little bit like this, let us say I am here. 



This is my 𝑥𝑘 and let us say this is my 𝑥𝑘+1 right. So, I am going to construct maybe like this I 

should call it ok, something like this ok or it may even be linear whatever I mean this some kind 

of a function being constructed over here. So this model is gonna be called 𝑚𝑘, okay. And the 

model I construct at a later point is gonna be called obviously 𝑚𝑘+1, okay. And quasi-Newton is 

also a line search method. 

 

That means the way I go from 𝑥𝑘 to 𝑥𝑘+1 is, right. That’s how I go. And what will this distance 

be? What is the distance between 𝑥𝑘 and 𝑥𝑘+1? 𝛼𝑘 times 𝑝𝑘, right. That is our general recipe of a 

line search method, all right. Now, knowing our Taylor’s theorem, if I am standing at 𝑥𝑘, ok, I 

want to construct a quadratic model. 

How would I construct this quadratic model? So for example, at 𝑝 = 0, this model should agree 

with the function. So 𝑚𝑘(0), what should it be? Not 𝑥𝑘, I am trying to model the function. So 

what should it be? 𝑓(𝑥𝑘), 𝑓(𝑥𝑘) has a shorthand 𝑓𝑘, okay. So, this is our very zeroth order term. 

Now, I will construct a linear term and a quadratic term, ok. 

So, linear term, any point, anyone wants to guess what my linear term should be? ∇𝑓𝑘 ⋅ 𝑝, ok. 

And now comes the second term which is also straightforward and easy to guess, what would 

be? There has to be a half, right? 𝑝𝑇. Hessian, should I put Hessian? If I put Hessian, if I commit 

to writing Hessian there, I am in trouble because then it becomes Newton. So, what should I 

write instead? Some 𝐵𝑘, which is in this case, since I am doing quasi-Newton, it will not be 

Hessian and 𝑝, right? So, this is strictly speaking just a quadratic model. 

The word model is very important because 𝐵𝑘 I have not specified right now. Quadratic model of 

𝑓 around 𝑥𝑘, this is what it is. I mean I take inspiration from Taylor’s theorem. Taylor’s theorem 

only difference is 𝐵𝑘 would be the Hessian. In Taylor’s theorem, if the larger you take 𝑝, the 

more terms you need to keep. 



So, that will always happen there. Remember our step length 𝛼 is there to save us in that regard. 

So, in that sense 𝑝 is a direction. So, before we go to 𝑥𝑘+1, let us do some very simple algebra 

over here. What will be the gradient of 𝑚𝑘? So, if I do this, So, remember in this expression I 

have written for 𝑚𝑘, what is the variable? What is changing? 𝑝. Is 𝑝 a vector or a scalar? It is a 

vector, ok. 

 

So, when I write ∇𝑚𝑘, obviously what are my 
𝑑

𝑑𝑝1
,
𝑑

𝑑𝑝2
,
𝑑

𝑑𝑝3
? 𝑝 is the variable. So, what is the 

gradient of 𝑚𝑘? Let us go term by term. First term, 0, constant. Second term, ∇𝑓𝑘, ok. And what 

else? That half will get cancelled when I do product rule, I will be left with a 𝐵𝑘𝑝, ok. 

We are, we made one small assumption here, what is that? Right, we assume that 𝐵𝑘 is going to 

be symmetric, ok. So, let us put that in over here. Assume 𝐵𝑘 is symmetric. So, let us look at, so 

𝑚𝑘(0) is clearly 𝑓𝑘, ∇𝑚𝑘(0) is what? ∇𝑓𝑘. So, you can see that 𝑚𝑘 is agreeing with 𝑓𝑘 or rather 

with 𝑓 on two counts, it is agreeing with the function values, agreeing with the gradient value, 

ok. In fact, in addition to 𝐵𝑘 being symmetric in this model since I am using a quadratic model, I 

should insert one more condition on it. 

What should that be from our entire past discussion? Positive definite, right? Assume 𝐵𝑘 is 

symmetric and positive definite, ok. Now what is the ideal 𝑝 that I want? If I am at, so I am 

sitting here at 𝑥𝑘, I have constructed a model and I want to know now what is the step 𝑝 that I 

should take. So again without going into math, common like if you put it into English, we should 

choose that value of 𝑝 such that my model 𝑚𝑘 is minimized. When is my model 𝑚𝑘 minimized? 

∇𝑚𝑘 = 0, right. So, this tells us we want ∇𝑚𝑘(𝑝) = 0. 

This gives us the value for 𝑝𝑘, right. So, implies that 𝑝𝑘 will therefore be equal to 𝐵𝑘
−1. I am at 

iteration 𝑘, I am at the point 𝑥𝑘. Because I am, so it is like this, I have reached a certain point in 

my iterations. Now I want to go further to a place where the function is minimized further, right. 



So I am going to say let me restrict myself to a small neighborhood around 𝑥𝑘 and based on what 

data I have about this function I am going to construct a model. Why am I constructing a 

quadratic model? For the precise reason what you know what I just wrote over here. 

If I write a quadratic model I can tell you the minimizer analytically. Well, at a point in the sense 

this is the model is not at a point, the model is in the neighborhood. The model is constructed in 

the neighborhood of a point. So, I am minimizing the model, I am not minimizing a point, right. 

So, I am this let me just write that down, to minimize the model. 

and the model 𝑚𝑘 is valid or legitimate in the neighborhood of 𝑥𝑘. That is why the subscript 𝑘 

goes with 𝑚. As I move to a new point, obviously I should construct a new model, right. This is 

in very intuitive words, this is similar to the idea that you, if you have a very complicated 

function, you could keep linearizing it at each point, moving a small distance and linearizing it, 

right. So here we are going one step further and saying, hey why linear, let us do quadratic, ok. 

 

Alright, so we have got this. Now what was the whole argument of a quasi-Newton method that I 

do not want to compute Hessian, Hessian is expensive. So, if Hessian is expensive to calculate 

therefore I have replaced it by this 𝐵𝑘. So, what I would like is that this 𝐵𝑘+1 should somehow 

come from 𝐵𝑘. So if I have something like that, an update rule which helps me, like I have an 

update rule for 𝑥𝑘+1. It is something I take 𝑥𝑘 and make some modification, get 𝑥𝑘+1. 

In conjugate gradient, 𝑝𝑘+1 came from 𝑟𝑘 and 𝑝𝑘, right? But you notice in the Newton method, 

every time I calculate the Hessian fresh. right. So, people had this intuition that why not apply 

this kind of similar logic to the Hessian also. So, this approximate Hessian I want some update 

rule in order that I use all the effort I have done in the previous step to get 𝐵𝑘+1. That is the sort 

of underlined intuition behind the quasi-Newton model, ok. 



So, let us just note that the quasi-Newton motivation. So, the only thing that we have to worry 

about is well possibly 𝐵0 you need to spend some effort in computing and then I keep updating. 

So, if now let us just draw your attention to this. This is one piece of data, 𝑚𝑘(0) = 𝑓𝑘. 

Similarly, if I ask you what is 𝑚𝑘+1(0), what would it be? So, I am considering 𝑥𝑘+1. 

So, this is simply going to be 𝑓𝑘+1. Similarly, ∇𝑚𝑘+1(0) would be ∇𝑓𝑘+1. So, now what has 

happened is, I have Both of these models, they, I mean none of these models invoke my 𝐵, the 

guy that I am interested in, right? So I need to do some kind of a trick to connect these two red 

bubbles over here. This is the first bubble, right? And the second bubble. What is connecting 

these two guys is going to be some kind of a way to update 𝐵. 

That is the missing link between these two. Right now they look like independent models, right? 

So, with this kind of intuition in mind, so let us note that down, this is the motivation. So, now 

let us consider 𝑚𝑘+1. Let us make or force this 𝑚𝑘+1 model to satisfy two things. 𝑚𝑘+1, does it 

give me the correct gradient at 𝑥𝑘+1? Let us ask question 1. Does it give me the correct value of 

∇𝑓 at 𝑥𝑘+1? So, very, is that a yes or no? Yes, we saw it by construction right, we saw this over 

here. 

It gives me the correct value of the gradient. So, let us put a tick mark over here. Now, let me ask 

you a second question. Does it give me the correct value of ∇𝑓 at 𝑥𝑘? Yes, no or we do not know 

or not necessary. It is definitely not, I mean it is not obvious. Looking at what I have written 

about 𝑚𝑘+1, 𝑚𝑘+1 if you look at the definition of 𝑚𝑘, if you look at for example over here, just 

replace 𝑘 by 𝑘 + 1. 

There is no information about the previous iteration in this, right? It is all 𝑘, 𝑘, 𝑘, there is nothing 

about 𝑘 − 1 over here. So, if I just pose the question like this, does it give me the correct value of 

∇𝑓 at 𝑥𝑘, the real answer is I do not know. If I do not know, maybe there is a way for me to make 

it do it and in that way I am going to get some kind of an additional constraint, I can introduce 𝐵 

into the picture, ok. So, let us see that. So, in order for us to do this, I am standing here at 𝑥𝑘+1. 

I came from here at 𝑥𝑘. If I want my model 𝑚𝑘+1(𝑝). So, let us pay attention here. I want this 

model to tell me something about 𝑥𝑘. If I put 𝑝 = 0, it is telling me at behavior at which point? 

𝑥𝑘+1, right. So, 𝑝 = 0 is 𝑥𝑘+1. So, what is that value of 𝑝 so that it corresponds to 𝑥𝑘? I have one 

answer over here, any other answer? What value of 𝑝 should I put inside this 𝑚𝑘+1 model, so 

that this function tells me something about 𝑥𝑘+1, 𝑥𝑘? 

Minus right, because the way I arrived from here to here was by walking a distance 𝛼𝑘𝑝𝑘. That 

means if I am now already at 𝑥𝑘+1, I need to walk backwards right. Correct. 𝛼𝑘, in this case do 

not worry about 𝛼𝑘. 

Let us assume that 𝛼𝑘 × 𝑝𝑘 is what we are talking about. So, this is going to be 𝑝 = −𝛼𝑘𝑝𝑘. If I 

substitute this inside my model 𝑚𝑘+1, it will tell me about 𝑥𝑘. So, let us look at that and also let 

us note this one thing over here. What is ∇𝑚𝑘+1(𝑝)? It is nothing but ∇𝑓𝑘+1 + one more term 

was there, what was that? Plus 𝐵𝑘𝑝. 

So, this is going to be 𝐵𝑘 + 1𝑝. This was just so, in order for me to get ∇𝑓𝑘 correct from 𝑚𝑘+1, I 

need to substitute this value over here. So, ∇𝑚𝑘+1 evaluated at −𝛼𝑘𝑝𝑘. This is going to give me 

information about the gradient at 𝑥𝑘, right. So, there are two ways in which I can compute this. 



One is just substitute into the above formula, right? So that is going to give me ∇𝑓𝑘 + 1 − 𝐵𝑘 +
1𝛼𝑘𝑝𝑘, right? I am just substituting. 

Ideally what should this be? This should be ∇𝑓𝑘, okay? So this is where the choice of model or 

choice of 𝐵 is coming into play. Because 𝐵 was not specified so far, here is where the choice 

comes in over here. So this is a critical step. Critical, you can call it a design choice. 

So, let us just rearrange these characters. So, you will have ∇𝑓𝑘 + 1 − ∇𝑓𝑘 is going to be equal to 

𝐵𝑘𝛼𝑘 minus looks like a rho p, looks a little not very intuitive what is going on over here. So, we 

are going to introduce some question, 𝐵𝑘 + 1, sorry. So, this over here ∇𝑓𝑘 + 1 − ∇𝑓𝑘 there is a 

simple notation for it that we are going to introduce, I am going to call it 𝑦𝑘. 

So, this is the definition of 𝑦𝑘. So, what is 𝑦𝑘? Difference of gradients between two iterations. 

What is the 𝛼𝑘𝑝𝑘 also known as? Can I write 𝛼𝑘𝑝𝑘 in terms of the 𝑆’s, it is 𝑥𝑘+1 − 𝑥𝑘, right? So, 

I am going to write this as 𝐵𝑘 + 1𝑆𝑘 = 𝑦𝑘, right because 𝑥𝑘+1 − 𝑥𝑘 = 𝑆𝑘 is also equal to 𝛼𝑘𝐵𝑘, 

okay. Now, this equation has come about by our choice. We have said I want this to be true and 

this equation is important enough to get a name of its own. 

It is actually called the secant equation. Now, we wanted this matrix to be to have what property? 

Symmetric and positive definite. How do I ensure positive definite over here? if matrix 𝐵𝑘 + 1 is 

positive definite. The definition of positive definite is 𝑧𝑇𝐴𝑧 greater than 0 for all 𝑧. So, in 

particular is there a nice choice of vector I can stick from the left over here, 𝑆𝑘
𝑇 right. So, if I left 

multiply by 𝑆𝑘
𝑇, what do I get? 𝑆𝑘

𝑇𝐵𝑘 + 1𝑆𝑘 = 𝑆𝑘
𝑇𝑦𝑘 and this should be greater than 0 for 𝐵𝑘 + 1 

positive defect, okay. 

This is, if this is ensured, I get if I can somehow ensure this, my matrix 𝐵 will be positive 

definite. So, how we can ensure this, I will come to in a, in a short while, okay. Now, notice one 

thing, I have said what are the two things I wanted about 𝐵𝑘? It should be symmetric, it should 

be positive definite. Now, if I think of a 𝑛 × 𝑛 matrix, how many unknowns are there in a 𝑛 × 𝑛 

matrix? 𝑛2. If I tell you it should be symmetric, How many unknowns are there? The upper 

triangular, I mean one triangular part right. 



 

So, that is roughly how much? 
𝑛(𝑛+1)

2
 right. So, 𝐵𝑘 is symmetric implies 

𝑛(𝑛+1)

2
 unknowns. Now 

𝑛(𝑛+1)

2
 is greater than 𝑛 or less than 𝑛? Is greater than 𝑛, right. Now so far if you notice I have 

not, I have not given you enough information to determine 𝐵. Because 𝐵 has how many 

unknowns? Roughly let us say 
𝑛2

2
. How many conditions am I imposing on 𝐵? The secant 

equation is it one constraint or 𝑛 constraints? It is actually a matrix equation, right? So, it is 

actually 𝑛 constraints. 

Each row of that equation is giving me one linear equation in some of the elements of 𝐵. So, I 

have 𝑛 constraints from the secant equation, So what does that mean? I do not have enough 

constraints. That is a good place to be. Why is that a good place to be? Because that means that I 

can do further design choices to supply the remaining missing pieces of information and which is 

why you do not have one quasi-Newton method, again you have a family of quasi-Newton 

methods. those are the additional constraints which you know people have worked out over the 

last maybe couple of decades which will give you different choices to nail down the remaining 

right. 

So, remaining constraints So I will tell you, we will discuss the one very very popular constraint 

in the literature. I am sure many of you have probably heard of this. It is named after the 

inventors of this method. It is called the BFGS relation. Anyone heard of this BFGS? Okay, if 

you, when you are working with the MATLAB toolbox and optimization, sometimes it will ask 

you for choice of optimizer. 

That is where you will see these different letters come up. So, this is one such choice. So, what is 

this choice? This, okay, so it is a long equation to write down. I will just write it down for sake of 

completeness, okay. Notice one thing, this secant equation over here, I wrote it like this, right? 

So, 𝐵𝑘 + 1𝑆𝑘 = 𝑦𝑘. 



There is another way of writing it. What is 𝐵𝑘
−1? Hessian. Remember 𝐵𝑘 was the proxy for 

Hessian inverse. So, you will find some equations they work with the inverse of the Hessian. I 

could have as well written the equation like this and this inverse has a special name, it is the 

Hessian. So, this BFGS relation what it does is, it gives us an update rule for 𝐻𝑘+1 in terms of 

𝐻𝑘. 

It is helping us fix the other degrees of freedom. So, 𝐻𝑘+1 is You are right. Yeah, okay. That is, 

when we wrote it, it was 𝑆, you are right, it is kind of backwards. I am not proving this, this has 

its own kind of proof over here, but this is in a sense this our quasi-Newton method is sort of 

working with this update rule, ok. 


