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Newton methods and convergence 

Yeah, without knowing the matrix how can vector matrix products be computed is the question. 

For example, if you want to know the curvature condition I need to know the Hessian. Now the 

point that I was trying to make earlier is we obviously need to know the Hessian. If I do not 

know something how can I calculate the product of that something with a vector? The point is 

how I store the matrix is where the innovation lies. I need not store the matrix in a dense way. 

That is what it means that matrix vector product is inexpensive if I mean can be evaluated 

efficiently as compared to storing 𝑛2 entries. 

So, anyway this point we will not be covering in this course because it is a point of numerical 

linear algebra implementation. So, whoever has this doubt just come and talk to me after class. 

For non-linear CG method, is there a guarantee of convergence in 𝑛 steps like in linear CG? The 

point is that where did in the linear CG, where did 𝑛 come from? How did 𝑛 enter the problem 

itself? The size of 𝐴, it was 𝑛 × 𝑛, right. So, now there is no 𝐴 matrix in the non-linear CG 

method. 

 

So, 𝑛 steps there is no guarantee. Even if your input vector is of length 𝑛, there is no guarantee of 

𝑛 steps convergence. And is it only for convex methods? It is not only for convex methods, it is 

for general non-linear functions. Why cannot we do a linear slash quadratic approximation of the 



function followed by linear conjugate gradient method? Very good question. So, we are trying to 

do, we have a non-linear function, we find it difficult. 

Why do not we linearize it or make it quadratic and then do linear CG? What is the problem with 

that? So, if I draw a complicated function like this, let us say ok, it would not be like this right. If 

I am at let us say at this point over here, if I do a linearized approximation I will get basically this 

line. So this line will help me in one small neighborhood, right. So if I am within this small 

neighborhood, it is approximately correct. The moment I go outside of it, again I have to update. 

So if I do linearized approaches, they work and that is one legitimate way of doing it. You can be 

fancier, you can say let me approximate it here by a quadratic, I will get something like this, 

right. So if I am lucky enough to be close to the solution, it will work. But if I am sitting 

somewhere over here, now if I fit a quadratic, then supposing I fit something like this. Do I do? 

Basically the solution is go to either end and you will get minus infinity. 

 

So, these tricks are used in fact what we will see later in quasi-Newton methods some kind of 

tricks like this are done. But what we have is the non-linear method which is a little bit more 

general than restricting yourself to first order or second order model. How are we going to 

approximate the Hessian matrix? We will come to that today. So, we are talking about Newton 

methods. So, the general recipe of the Newton method we saw last time that I am going to write 

the search direction as something times the gradient of the function. 

What is that something? Not 𝛽, 𝛽 would be dangerous, 𝐵. Some matrix 𝐵𝑘 inverse and 𝐵𝑘 was 

what? So, now 𝐵𝑘 could be either depends on the context. In the Newton method 𝐵𝑘 was equal to 

Hessian and in quasi-Newton method approximation of Hessian. So, this common notation will 

cover both methods. When you see this do not immediately conclude that it is Newton or quasi-

Newton, you have to ask further what it is, ok. 



What I am going to do is I am going to show you a small property of convergence. We should 

have some proof that this method converges right. In the steepest descent method we had shown 

that the method converges. In the conjugate gradient method also we had shown that it converges 

in fact in at most 𝑛 steps. So, similarly there is going to be some proof of convergence. 

The proof techniques are similar to what we did for steepest descent. So, there is nothing new 

really for you to see except just a reapplication of how. So, we look at that, then I will show you 

what the rate is, the rate is quadratic which is why Newton methods are so attractive, ok. And 

then we will come to these quasi-Newton methods which are also very nice, ok. So, that is 

roughly what we are going to do. So, does, do you remember this Zoutendijk condition? We had 

done this quite about a month ago right. 

 

This was when we were trying to prove that the steepest descent or any line search method 

converges. So, the Newton method the way we wrote it is also a line search method. The only 

difference is the direction 𝑝𝑘 is different from steepest descent ok. So, this was also I think one 

of the last questions of your quiz. I had something like this. 

So, this is this was telling us how 𝑓𝑘 was reducing in terms of this running summation, right. And 

we had said that if you look at the what is inside over here, this term will always be positive 

obviously, right. So, this summation 𝑗 is equal to 0. As 𝑗 tended to very large number of iteration 

steps, what did we want for the method to converge? This term cos(𝜃𝑗) × ∇𝑓 should be tending 

to 0, right. Why do we want it to tend to 0 by the way? Can someone answer in plain English? 

What if it did not tend to 0? Then 𝑓𝑘 would become unbounded. 

Even as I am going to infinite terms, I am continuously adding something finite, adding 

something finite, that would mean that 𝑓𝑘 would become unbounded. On the other hand, we 

started the whole discussion by saying that it is common sense only to optimize functions which 



are bounded from below. They do not go to minus infinity. For example, if someone says 

optimize log(|𝑥|), find a minima of log(|𝑥|). 

We know that as 𝑥 tends to 0, this thing goes to what? Minus infinity. So, it is nonsensical to 

optimize it. So, we start off by saying let us deal with functions that are bounded from below. So, 

that means this should tend to 0 for bounded functions, ok. Now, for this to tend to 0, what are 

the two possibilities? Either the first term is 0 or the second term is 0 obviously right. 

So, either cos𝜃𝑗  tends to 0 or the norm of this. Which one do we want? If you want the method to 

converge to a stationary point, what do we want? The second guy, right? The second guy had 

better be true, ok. Why? Because stationary point is ∇𝑓 = 0, this is why we want. Straight away 

the implication therefore is that this cos𝜃 term therefore has to be strictly greater than 0, 

otherwise, my stationary point condition may not hold. So, cos2𝜃𝑗  should be strictly greater than 

0, ok, not greater than or equal to, but strictly ok. 

 

So, in the case of the Newton method, what ends up happening it is quite easy to show is that 

there is a certain condition on the Hessian, ok. So, there is a condition on the Hessian condition 

on the Hessian for this, by this, I mean. And that condition is that the condition number of the 

Hessian should be, should have a bound. It should not be arbitrarily large, ok. 

So, that condition is. So, 𝜅(𝐵𝑘) is less than 𝑀. Now, we will show why this is the case, ok. This 

is the condition number. That kind of, before we get into some algebraic proof for this, can you 

think of an intuitive reason why this makes sense? Why should we have a bound in the condition 

number? What is condition number doing after all? Remember what was, it is amplifying the 

errors. So, obviously if the amplification goes very very large, every time you make a step in a 

certain direction you are going to have some errors over here and this is a proof of convergence, 

we want the method to converge. 



So, intuitively you can expect that putting a control on the condition number is going to help us 

to arrive at the solution. This is a very very rough hand-wavy argument, but we can look at it a 

little bit more precisely, ok. So, what is, how does this lead to cos𝜃𝑗 being greater than or equal 

to 0? So, let us look at the proof. Now, this cos𝜃 was the angle between what and what? This is 

related to what we call the descent direction. 

 

So, 𝑝𝑘 and ∇𝑓, right. So, 𝑝𝑘 and −∇𝑓, right, the gradient, the negative gradient. So, cos𝜃 

therefore is the angle here −∇𝑓⊤𝑝𝑘 and normalize it. Yes. So, here I am using the everywhere I 

have a subscript. Now I am going to use two properties of norms to come to this result, two fairly 

straightforward properties of norms. 

So, that these are, if this exists and is positive definite, supposing the matrix 𝐵 or 𝐵𝑘 exists and it 

is positive definite, can we say anything about √𝐵? Will it also be positive definite? First of all, 

what do I mean by square root of a matrix? Does it make sense? Right. So, has anyone seen this 

ever written before for a matrix? It kind of looks funny, right? But what is it effectively? It is 

𝐵1/2. Now, if I tell you 𝐴 × 𝐴, you would say, oh, there is no problem multiplying a matrix with 

a matrix. So, 𝐵1/2, what would it end up being? So, it is going to be that matrix which when 

multiplied with itself gives me back 𝐵. That is one way of looking at it, right. 

And there is a very simple way of writing it. So, if I had the eigenvalue decomposition of 𝐵, 

what would it be? So, if 𝐵 was 𝑄𝛬𝑄⊤, then 𝐵1/2 would be what? So, the square root simply 

transfers over here. And you can convince yourself that if I multiply two of these with each other 

what will I get? 𝑄⊤𝑄 inside will become identity, 𝛬1/2 multiplied by 𝛬1/2 will become 𝛬, I get 

back 𝐵. So, this is legitimate candidate for √𝐵, I am going to work with that. Now, is this guy 

positive definite? Clearly it is positive definite. 



So therefore, this is also PD (positive definite) all positive definite, ok. Similarly, I can also talk 

about 𝐵−1/2, it makes as much sense as 𝐵1/2. All that I have is negative 1/√𝜆 will appear in the 

diagonal term also is also positive definite. The second is the, is a property of norms which 

simply says that if I have the norm of a product, this is less than or equal to norm A times norm 

B. This is again follows from linear algebra, we will not prove it over here. Now, our search 

direction I am writing, I am dropping the 𝑘 for norm because we are sitting at the 𝑘’th iteration 

also. 

 

So, let us just write over here dropping 𝑘. 𝑃 was simply − 𝐵−1∇𝑓, right. This is for the Newton 

or quasi-Newton method, which in other words I can write this as ∇𝑓 = −𝐵 × 𝑃, ok. Now, what 

are we, the thing to keep in mind is this is the guy and what do we have to prove? What is the 

end goal? I have this expression for cos𝜃𝑘, what do I have to prove? It is positive, right? And I 

have to somehow relate it to this condition number business, ok. Now, you can see this property 

number 2 which I have used is going to help me in which part of this expression? Norm of A into 

B is less than equal to norm A into norm B, where can I, I can possibly use this somewhere, 

right? In the numerator or denominator, there are both places depending on how I take it. The 

third thing, what was the definition of the condition number? Just like the textbook definition. 

No, that is a more applied definition, the ratio of singular values. That is one correct definition, 

but there is another way in terms of matrix norms, right. So, this was the product of norm of 𝐵 

multiplied by norm of 𝐵−1, ok. And we are given that this is less than or equal to 𝑀. 

This is given to us in the problem, ok. So, now I am going to take my cosine expression and 

notice your cosine expression is the matrix 𝐵 inside it anywhere? It is only in terms of ∇𝑓 and 𝑝. 

So far 𝐵 is not there. If 𝐵 is not there, 𝑀 cannot enter the condition number, right. So the first 

trick would be to now somehow get 𝐵 into the picture. Is there a nice way by which I can get 𝐵? 

Yes, right, because ∇𝑓 = −𝐵 × 𝑝. 



So that is our first clue, right. That let me at least get 𝐵 into the picture, then I can put some 

inequalities on it. So this guy over here, I am going to substitute and get rid of which guy? ∇𝑓. 

So, cos𝜃 would be equal to −∇𝑓 would become, the minus and minus would become a plus. I 

have a 𝑝⊤𝐵, 𝐵⊤ can I write it equal to 𝐵? Hessian is always symmetric because the mixed partial 

derivatives are sitting there, right. So, then I have a 𝑝, this is the numerator. And denominator 

has ∇, so there is a sorry 𝐵 × 𝑝 and then what else do I have? I have a 𝑝. 

 

So, what we can do is we can take our this inequality from 2, ok. So, inequality from 2 is saying 

that ∥ 𝐴𝐵 ∥ I can split as ∥ 𝐴 ∥∥ 𝐵 ∥, right. If I take it in the reciprocal, what will this be? 
1

∥𝐴∥∥𝐵∥
 

would be all positive quantities I can do this. So, if I apply this over here, I am trying to open up 

this guy over here, right. So, this expression over here would be I can write it as greater than or 

equal to something, right. 

This expression can be written as greater than or equal to what will I have? Numerator stays as it 

is. Greater than or equal to I am, this is the guy that this is think of this oops think of this as this 

ok. I should have written it that way. So, this is greater than or equal to I am going to get a ∥ 𝐵 ∥ 

and then 𝐵2. Now, can we simplify this numerator in some nice way? Can I write it as the norm 

of something, norm squared of something for example? The hint is the square root 𝐵 guide that I 

had introduced, 𝑝⊤𝐵𝑝, can I write it as 𝑝⊤√𝐵√𝐵𝑝? I can write it like that. 

And will √𝐵 also be symmetric? It will also be symmetric. So, this guy can therefore be written 

as ∥ √𝐵𝑝 ∥2. Can I write it like that? So, I am trying to now simplify this numerator expression 

over here. So, what do I get? Is greater than or equal to I have a ∥ √𝐵𝑝 ∥2, ok. And denominator 

I have ∥ 𝐵 ∥ and I have a ∥ 𝑝 ∥2, ok. 

Now, let us, we are basically what we are trying to do is somehow get rid of some of these extra 

√𝐵’s just have one 𝐵 over there, then I can replace this condition number over there. This 𝑝 



itself I can write as 𝐵−1/2, 𝐵1/2, supposing I write this 𝑝 like this, is it correct? 𝐵−1/2 multiplied 

by 𝐵1/2 and 𝑝, right? Now you can see what I am trying to do with this. I am going to try to split 

it in this way so that 𝐵1/2 times 𝑝 is there in the numerator and denominator, that is going to be 

the strategy. So, let us get rid of this over here. So, this can further I am going to write this as 

𝐵1/2 × 𝑝 squared. 

 

This 𝐵 remains over here, ok. And now then here is where I split it open. So, I have 𝐵−1/2, then 

𝐵1/2 × 𝑝. So, what I did. Is the inequality still valid? I used that ∥ 𝐴 × 𝐵 ∥ is less than or equal to 

∥ 𝐴 ∥×∥ 𝐵 ∥. So, I have used that trick a second time, right. I wrote it like this and then I club 

this as this is my 𝐴 term, this is my 𝐵 term and then ∥ 𝐴 × 𝐵 ∥ is less than or equal to ∥ 𝐴 ∥∥ 𝐵 ∥. 

So, when it goes into the denominator, it reverses. Now, can you see what needs to, what 

happens? Does the numerator cancel off? I have 𝐵1/2 × 𝑝 ∥2 is there. Is it there also in the 

denominator? It is also there in the denominator, right. So, this guy and this guy cancels off. 

There is another simple enough property of linear algebra that this is equal to, you can take the 

square inside basically, right. So, what do I get? This becomes 
1

∥𝐵∥
 and then this becomes ∥

𝐵−1 ∥, right. 

And this expression is what? This is related to our condition number, right. So it’s a little bit of, 

it’s not difficult. It’s just, if you know that you want to somehow get in the condition number 

there, I need to get 𝐵 and 𝐵−1. These two have to appear together. 

And so I repeatedly use this norm property over here to somehow keep splitting it until I got rid 

of the numerator and I was left purely with 𝐵. If I was stuck with a 𝑝 somewhere then I am in 

trouble because 𝑝 could be anything depending on the iteration, right. Here I have managed to 

get it regardless of the direction 𝑝, I only got it in terms of 𝐵. Now regardless of the iteration if 



you tell me that the condition number is at max 𝑚, this condition will always be valid. That 

means cosine 𝜃 is always greater than 1/𝑚, do whatever you want. 

 

If that is the case then if you look back over here, if this is greater than 0 that means the only way 

this Zoutendijk condition is going to work is if ∇𝑓 = 0. And if ∇𝑓 = 0 that means I have arrived 

at a stationary point. So, these proofs of convergence typically will use these kind of inequalities, 

maybe Cauchy-Schwarz and this norm inequality and then a whole bunch of clever algebra. The 

first time you see it, it looks like you know rabbit being pulled out of the hat or you see it a few 

times, these are, you know, few standard tricks, nothing much to it. So, this we get this condition, 

therefore ∇𝑓 tends to 0 as 𝑗 tends to infinity, Newton method convergence. 

Again practitioners almost they do not care about this because it is, you know, they care more 

about the rate at which convergence happens, ok. So, I am going to state without proof that this 

the rate of convergence is quadratic, ok. So, the rate of convergence is this is in Nocedal and 

Wright I think this is theorem or rather look at section 3.5 where they have a proof for this, ok. 

So, this is as I have been saying many times this is the reason why Newton methods are very 

popular because you get quadratic, right. 

So, quadratic just simply means that if I look at this distance 𝑥𝑘+1 − 𝑥∗, and this was less than or 

equal to some constant over here and then I have 𝑥𝑘 − 𝑥∗. What is the difference between linear 

and quadratic? You are going to get a square here ok. So, this is from quadratic. If you had linear 

this would be to the power 1. So, this is showing you that as I get closer and closer to the 

solution this error in some sense is getting is going to 0 at a much faster rate, right. 

Imagine that at step 𝑘 this guy ∥ 𝑥𝑘 − 𝑥∗ ∥ was 0.1. In a linear method, the next iterate had to be 

less than constant times 0.1, but in a quadratic method this has to be some constant times 0.01. 

So, it is going to towards 0 at a much faster rate that is why quadratic is a huge deal, right. It is 



not just a scaling factor or a linear factor it is an exponential, I mean power 2 by which it is 

going. 

Okay, so this is the whole reason for the charm of Newton method. Any questions on this? The 

proof just has, you know, some getting used to by looking at it a few times and then you master 

it. 


