
Course Name: Optimization Theory and Algorithms 

Professor Name: Dr. Uday K. Khankhoje 

Department Name: Electrical Engineering 

Institute Name: Indian Institute of Technology Madras 

Week - 07 

Lecture - 48 

 

Non Linear Conjugate Gradient method 

OK, should we start? I’m going to start with the doubt sheets. OK, I guess this goes to the initial 

motivation. Maybe I should open that folder. Yesterday when we were talking about 

preconditioned CG, we came up with, where is it gone? Yeah. is 𝐴̂ symmetric positive definite? 

We can clearly see that it is positive definite. The question is why is this symmetric? Why is 

𝑍⊤𝐴̂𝑍 symmetric? Sorry, why is 𝐴̂ a symmetric matrix? If I want to test what is the signature for 

a symmetric matrix? 𝐴̂, the transpose should be equal. 

So, is 𝐴̂⊤ equal to 𝐴̂? That is the question. So, what is 𝐴̂ defined as? 𝐿⊤𝐴𝐿. So, I need to take its 

transpose. So the transpose will just flip it all around, right? What will I get? 𝐿⊤𝐴𝐿. 

 

That is straightforward. Okay. Right. If we can use the SVD to get a low rank approximation of 

𝐴, remember the problem was that 𝐴 had a bad condition number. So the student is asking if we 

use SVD to get a low rank approximation of 𝐴, it would also decrease the condition number. 

Can we use this low rank approximation in the conjugate gradient method and get similar offset 

as effect as preconditioning? What do you think? SVD itself is what complexity? So if I am 

going to do an SVD to get a low rank approximation, I have already done the right. So as it is, it 

is not a good idea. However, there are some inexpensive techniques to get an approximation, like 



you do not have to do the entire SVD. You could just get a few of the eigenvectors. So those 

again fall into the domain of linear algebra. 

You could use those techniques to get some approximation, right, which has a better condition. 

Remember, we don’t need something very, very exact. We just need some trick to improve the 

condition number so that our iterations speed up. So again, this falls in the domain of numerical 

linear algebra, which we are not going to go into detail. So Omkar’s question is, what is the order 

of the difference between 𝐴 and 𝐾𝐾⊤, right? The incomplete Cholesky and the actual matrix. 

Can I... Can the magnitude of this difference be limited while maintaining the sparseness of 𝐾 

and the low computational cost? That’s one question. A related question is why does incomplete 

Cholesky give a sparse matrix only? And another is how do you compute the incomplete 

Cholesky decomposition? These are all questions of numerical linear algebra. We are not going 

to do it in this course. 

The algorithm itself of incomplete Cholesky is quite straightforward. You Wikipedia it, you get a 

pseudo code. If you wanted to just implement it, you can. Okay. Understanding would require 

reading a text in numerical linear algebra. 

 

This would not be done in a first course on linear algebra. This is numerical linear algebra. I 

think the math department has a course for it. Calling a matrix with a bad condition number 

means you have calculated it, which in turn requires calculating 𝐴−1. 

So, what the student is saying is that the definition of the condition number is... So, how will I 

know the condition number unless I calculate 𝐴−1, and therefore, it seems like a bad idea? So, 

remember this is the definition of condition number. Right? This is not in practice how you will 

calculate the condition number numerically. Again, it is a whole branch of numerical linear 



algebra to calculate what this condition number is without obviously expending order 𝑛3. So no 

one is going to do this. 

This is as good as writing the solution when I write 𝐴 = 𝑏, sorry 𝑏 = 𝐴−1𝑥. This is the symbolic 

way of writing the solution. It doesn’t mean I’ve actually calculated 𝐴−1 and then multiplied by 

𝑏, right? That was class 12, but that’s not how it’s done. So, this is just a formula. How to 

implement it is, again, a fairly rich field in its own, okay? And remember, in what we did last 

class, we are never calculating. 

 

We had this incomplete Cholesky decomposition, right? We never calculated any inverse 

anywhere. We worked that out in detail. So that cost has been saved. Any other questions not 

discussed just now? So what we have done so far is we have completed the basic version of the 

conjugate direction method. We saw how that gives the conjugate gradient method. 

And then we gave a practical version of the conjugate gradient method, which is the 

preconditioned conjugate gradient. So this completes the description of the conjugate gradient 

method. And now you could implement it decently. The next version that we are going to look at 

is the nonlinear conjugate gradient method. 

Okay. Question? So in your usual conjugate gradient method, usual CG, the cost function which 

we had written was a quadratic form, right? And we had written it as 
1

2
𝑥⊤𝐴𝑥 − 𝑏⊤𝑥, right? And 

we said this is the same as effectively solving 𝐴𝑥 = 𝑏. Why? Because ∇𝑥= 0 was 𝐴𝑥 − 𝑏. Now, 

having experienced the success of the usual CG method, the question that comes is, can 𝜙 be a 

general convex function? What do I mean by general convex function? It means not just a 

quadratic form. 



There can be other functions which are convex but not quadratic forms. Remember the definition 

of convexity. I have drawn the graph and the function value lies below. So, this is one question. 

The other question is, can 𝜙 be a non-linear function? 

So, this is if you pose this question, the answer turns out to be a non-linear function. Yes. But we 

have to obviously make some modifications for this to work. And these modifications are sort of 

more or less common sense, right? So, what changes will we have to make? Can you think of, 

looking at the recipe of the usual CG, what would be the first or one of the things that changes? 

So, what was the special property of the quadratic form that got used in the CG method? Positive 

definite, but now we no longer have positive definite. Okay, so positive definite is out. 

 

Some general function has come to us. How did we calculate the step length in CG? It was exact 

step length, right? Can I do that here? I cannot do that here. Why? Because, I mean, I can do it, 

but it’s going to be very expensive. So, I have to give up exact line search and replace it with an 

inexact line search. So, step length, exact line search not possible. 

So, I have to give up something. The other small modification that I will have to make is, 

remember the expression for the residual. The residual was what? 𝐴𝑥 − 𝑏. Now there is no 𝐴 and 

𝑏, right? So, what should I, if you were in charge of affairs, what would you replace the residual 

expression by? ∇𝑓(𝑥), right? So that is the second change that you need to do. Replace 𝑟𝑥 =
∇𝑓(𝑥), okay? All right, now let us say I make these two small changes. 

Now let us try to just list out the modified CG method, okay? So let us see, do I have all the nuts 

and bolts in place for this? Let us see, right? So, check the new procedure. Step 1 was what? In 

our usual CG, I have picked a, let us say I have picked 𝑥0. That is randomly chosen. What would 

be the next step? ∇𝑓(𝑥0), okay, I can calculate ∇𝑓(𝑥0), okay. Obviously, I have access to 

calculating the function and gradient value. 



So, I calculate ∇𝑓(𝑥). How does this help me? This gives me 𝑟0 which is related to −𝑝0, right. 

So I have got my initial direction to go into, okay. What do I do with this next? I have got the 

direction in which I have to go to. What do I need to go to 𝑥1? 𝛼0, right. 

So, therefore I need 𝛼0. How am I going to get this? Step 1, I mean the first thing over here, 

right? I don’t have an analytical expression for 𝛼, no problem. I replace it by a module of inexact 

line search. I can do that, right? So, inexact line search. Right? That took me to 𝑥1. 

Okay? Now I need to update my 𝑝. Right. So, what was my original expression for 𝑝𝑘+1? We 

said that it is related to the residual or in this case now the gradient plus some linear coefficient 

times the previous search direction. Now if you look at the expression for 𝛽𝑘+1, if I just replace 

the residual by ∇𝑓, what will I get? So is my recipe, modified recipe now complete? Do I have 

everything in place? We are not getting into the proof that this is going to work or not, but will 

the recipe as it is work? I’ve got a way to calculate my 𝛼. I’ve got an expression for 𝛽, which 

gives me my new conjugate direction. I can now rinse and repeat and go through the iterations. 

 

Would you agree? Right? We were all several decades late to the party. So, two people by the 

name of Fletcher and Reeves made this small modification. And the first nonlinear CG version is 

named after them. So this is basically what I’ve outlined over here is Fletcher, Reeves, we’re 

going to call this NLCG. 

So it’s very simple. I mean, it looks very simple because minimum modifications to the usual 

linear CG have been given. What is missing over here? We have no idea that this is going to 

work. So what is the big difference now between linear CG and non-linear CG that we have 

glossed over? What was critical in the case of linear CG? Positive definite. Positive definite 

which was used for doing what? for making the conjugate directions. 



The 𝑝’s were conjugate with respect to 𝐴. Now there is no 𝐴. So the meaning of conjugacy itself 

is no longer valid because I have a nonlinear function in general. So these are the things that we 

need to look at a little bit more. But is everyone clear on the minimum modifications? I just 

replaced residual by ∇𝑓(𝑥) and the rest of the procedure goes along with the inexact line search. 

So the problem is 𝐴 conjugacy is gone. If conjugacy is gone, what can I do? How can I still save 

the story? The hint is think of gradient descent. In gradient descent, I did not have conjugacy. I 

had something else. What was that something else? Orthogonal. 

Orthogonal to? Not orthogonal. That was a consequence. But what is the more primary property? 

What did I ask for the search direction? It should be a legitimate descent direction, right? In 

gradient descent was a special case where it was exactly in the negative gradient. But in general, 

remember that cos𝜃, as long as I am in making an acute angle with the negative gradient, I am 

guaranteed to first order that my function value is going to decrease. And we call that a 

legitimate descent direction. So since 𝐴 conjugacy is gone, we at least should have something. 

So that something is to fall back on ensuring that 𝑝 is a legitimate descent direction. So 𝑝𝑘 needs 

to be a legitimate descent direction. So, just to remind you graphically, if this was my ∇𝑓𝑘, then 

my 𝜃𝑘 had what range from −
𝜋

2
 to 

𝜋

2
. That was the meaning of a legitimate descending direction, 

just as a refresher. Now let us get into a little bit more of the details. So what would, so I am just 

going to rewrite the update equation for the 𝑝. 

Am I satisfying this at the start of iterations with 𝑝0? I am trivially because I am starting with 

𝑝0 = −𝑟0 which is −∇𝑓(𝑥). So I am satisfying it at step, at the starting which is graded. But how 

do I know that as my iterations go, my 𝑝’s continue to be legitimate descent directions? I have to 

ensure that otherwise the whole thing will fall apart. 

 



So let us look at the update equation. Which was what? Let us write it for 𝑝𝑘. So 𝑝𝑘 = −∇𝑓𝑘 +
𝛽𝑘𝑝𝑘−1. Okay. So if I want to test a legitimate descent direction, what do I do? Dot product with 

∇𝑓(𝑥), right? So let us left multiply by ∇𝑓⊤, okay? What is the first term on the right-hand side? 

−∥ ∇𝑓𝑘 ∥
2. 

Is this good news or bad news? It is good news. Why? Because this term is always going to be 

negative. So that is already good. And then I have 𝛽𝑘∇𝑓𝑘
⊤𝑝𝑘−1. So this is, on the other hand, this 

term could potentially be problematic. Why? Because if this exceeds ∥ ∇𝑓𝑘 ∥
2, then what will 

happen? 𝑝𝑘 will no longer be a descent direction. 

So, looking at this term is really one of the tricky parts of non-linear CG. Okay. So to study it, 

first we will study it in a more theoretical way. Then we will see practically what is to be done 

about it. So let us say, just for sake of argument, say that I did exact line search somehow. 

Okay. So let us say that here I am at 𝑥𝑘−1, and this is my 𝑝𝑘−1 and I arrive at 𝑥𝑘, okay. So I am 

choosing 𝑥𝑘−1 because I want to evaluate this term over here. There is a 𝑝𝑘−1, right. 𝑝𝑘−1 is 

involved in the journey from 𝑥𝑘−1 to 𝑥𝑘. 

That is why I am writing this away, right. So these are the two points over here, okay. So if I 

were standing over here at 𝑥𝑘−1, what is the function that I am looking at? Like I want to find out 

the 𝛼 that gets me to 𝑥𝑘. So if you remember we had written it as a function of one variable. This 

was 𝑓(𝑥𝑘−1 + 𝛼𝑝𝑘−1). 

And we were hunting for the best 𝛼. Right? And whatever best 𝛼 I get, what will I call that? I 

will call that 𝛼𝑘−1. Once I find it, I will call it 𝛼𝑘−1, whether by exact or inexact line search. Let 

us now for sake of argument assume that I did exact line search. Now what was the defining 

feature of an exact line search? 
𝑑𝜙

𝑑𝛼
 should be what? 0, right. So if I did exact line search, it would 

imply that 
𝑑𝜙

𝑑𝛼
= 0. By the multivariate chain rule, what happens to the right-hand side? 

∇𝑓𝑘
⊤𝑝𝑘−1. 

Now, this whole expression over here, what is the short form notation for this? Is this ∇𝑓𝑘 or 

∇𝑓𝑘−1 or nothing? This is nothing but ∇𝑓𝑘. Sorry, this is ∇𝑓𝑘 because this expression over here is 

nothing but 𝑥𝑘. 

So this is ∇𝑓𝑘
⊤𝑝𝑘−1, and this should be equal to 0. Does this look familiar? Right? It’s the exact 

same character and the right-hand side of this. So simple argument, right? It assumes that I did 

exact line search. If I did exact line search, this term is 0. If this term is 0, then the expression on 

the top over here, ∇𝑓𝑘
⊤𝑝𝑘 became equal to −∥ ∇𝑓𝑘 ∥

2, right? So that is great news. This term is 

always guaranteed to be negative, right? So if I were to say this in plain English, what is it, how 

would you write this observation in plain English? Question? Correct, I agree with you. 

We are not doing, I am starting with the ideal case and then I will make it non-ideal. In the ideal 

case, if I were doing exact line search, what is the consequence over here in plain English? It is a 

descent direction, but it is saying that if I start with a legitimate descent direction, the next 𝑝𝑘 is 

also a legitimate descent direction. So if I do exact line search and I start with a legitimate 

descent direction, all along the way I keep getting descent directions. So that is great. 



That is giving me a clear way forward of implementing a nonlinear CG. Make sure I do exact 

line search, no matter how expensive it is, and pick a descent direction to start with, then every 

step will be this, right? So let’s just note that down. If I do exact line search and start with a DD, 

which is a descent direction, it implies all 𝑝’s are DD. Why? Because they always make a 

negative, I mean, acute angle with the gradient of −∇𝑓 direction. Now, of course, as was pointed 

out, if I’m doing nonlinear CG and my function is expensive to evaluate, obviously, I don’t have 

the luxury of exact line search. So in practical cases, you can say that exact line search is not 

possible. 

Now, thankfully for us, there is a lot of analysis that has been done on this problem. So there is, I 

am just going to state the theorem statement that helps us, okay. And as you can probably guess, 

it has something to do with the Wolfe conditions. So if you do the Wolfe conditions in a certain 

way, even though you do not do exact line search, you continue to have legitimate descent 

direction. 

So I will state it here without proof, okay. So the fix is to impose the strong Wolfe conditions 

with the following. 𝐶1 came from which Wolfe condition? Sufficient decrease. 𝐶2 came from? 

Curvature condition. And here it is not just the curvature condition, it is the strong Wolfe 

conditions. 

Remember we put the mod sign. So that was our 𝐶2. Earlier we had said when we first learned 

the Wolfe conditions, 𝐶1 < 𝐶2 < 1. Here it has become a little bit more conservative. It has been 

made half. So this is without proof being stated. If you impose this, then all directions are very, 

very simple to implement condition, right? So that is why it gets implemented a lot in non-linear 

optimization, right? So that’s all we need to do. 

We give up our exact line search. We replace it with an inexact line search. Make sure that the 

Wolfe conditions are followed in this way. And I go back to this recipe over here, the Fletcher 

Reeves recipe over here. Start with −∇𝑓 Walk through the steps and everything works out. Now 

it is hard to, so this is one of the first variants, one of the first versions of non-linear CG. As you 

can imagine, there are, when people would have implemented it, there were some issues that 

came up. 

So there are actually several versions or you can say cousins of non-linear CG which are there. I 

am going to cover only one more. There are several more but I will cover the two main ones. 

This is the first one that you should know because it is the closest related to the linear CG. What 

happens is when you look at this situation over here, the geometry of 𝑝𝑘 and −∇𝑓𝑘. 

Legitimate descent direction means that this angle should be acute, right. Now it is in many 

problems observed. So I am giving you an observation. I am not proving it or anything, an 

empirical observation that if you take this Fletcher Reeves method, after several iterations, what 

starts happening is that this angle 𝜃𝑘 tends to 
𝜋

2
. Now if it tends to 

𝜋

2
, what’s going to happen? I 

kind of get stuck because I’m not proceeding in a descent direction. 

So I’m kind of going along the contours of the cost function. And so progress is stopped. So let’s 

just make a note of this. Often 𝜃𝑘 tends to... It is still strictly less than 
𝜋

2
. So it is a legitimate 

descent direction. 



But if that angle becomes really, really small, then I cannot progress. Okay? So knowing that this 

nonlinear CG has sort of been cobbled together like a, almost like a cooking recipe, if you were 

in charge of fixing it, how would you fix it? It does not require any fancy math. So let me keep 

this over here. You can in fact show that if this descent direction, if 𝜃𝑘 is tending to 
𝜋

2
, it can be 

shown that 𝑝𝑘+1 and 𝑝𝑘, they become almost the same. 

So then what can we do? Decrease 𝛽𝑘. That’s a great idea. How much should I decrease it to? 

That’s all there is to it, right? So supposing I make, supposing 𝑝𝑘+1 is turning out to be equal to 

𝑝𝑘, almost equal to 𝑝𝑘. What is top, I’m not bound to this 𝛽𝑘 parameter. I’ve defined it from 

looking at my linear CG. 

Nothing is holding me to it. So what should I do? If I said, he said, let’s reduce 𝛽𝑘. Let’s make it, 

take it all the way. If I make it, drive it down to 0. What happens to my 𝑝𝑘+1? It becomes 

−∇𝑓𝑘+1 which is a great descent direction, right? 

So that is actually what is done. So set 𝛽𝑘 equal to 0. Rather this is called a reset because it is 

resetting the descent direction, okay. Again we were late on the scene, so the guys who figured 

this out got their name to it. Polak-Ribiere, you can never get the I’s and the E’s correct. So what 

this method is doing, it is basically just a small variation of the Fletcher Reeves CG and I keep 

monitoring 𝜃𝑘 or cos𝜃𝑘. 

 

As this 𝜃𝑘 tends to 
𝜋

2
, I do a reset and then the same recipe follows along, okay. There is this 

expression for 𝛽𝑘. In this, the only loose kind of thing is how do you define 𝛽𝑘, right? This has 

been written down by observing the linear CG. So there are people who have come up with 

different and more efficient expressions for 𝛽𝑘. And so that has given rise to a full family of 

nonlinear CG methods, okay. 



The theoretical analysis of it is quite difficult, so people will do it heuristically. You, you know, 

you try several different versions and you see it will work well on a nonlinear, sorry, the Polack-

Ribiere may work well on one problem, Fletcher-Reeves will work well on another problem. So, 

it is hard to say anything very definitive about it, but these are the options available. If you use a 

numerical linear algebra library, they will give you headers for all of these different versions for 

you to try out, okay, for that reason. So, this is in a nutshell your nonlinear CG method okay. It is 

the only theoretical thing of importance over here which we did not derive was the fact that this 

one over here. 

As long as I maintain this Wolfe condition with 𝐶2 <
1

2
, everything goes through. So, if you have 

a nonlinear method to optimize, here is a very, very simple recipe that you could do. What is the 

other simple recipe that we have? Gradient descent, gradient descent. Again, it is a heuristic. So 

it, 𝜃𝑘 is never going to become 
𝜋

2
, right. 

So it is going to become, so you can put a threshold. If |𝜃𝑘 −
𝜋

2
| falls below a certain threshold, 

you reset. Correct. You reset it. 

For one iteration you set it to 0. And then you let it, then you use the rest of the formulas. If you 

do always 0, yeah, yeah. This is, yeah. So this reset is, only one iteration. 

Not for all iterations. If you do it for all iterations, it becomes gradient descent. Yeah, yeah, yeah. 

So it is a reset. I set it to 0. It is like starting from 𝑝0. 

Now I follow the rest of the recipe. So it is like something is getting back, you reset it. 

Something is getting back, you keep resetting. So yeah. For one iteration only. So only one 

iteration. OK. So, you know, it will be good if some of you can try to just write a simple code for 

this. Take a nonlinear function. In fact, there are benchmark nonlinear functions available if you 

Google for it, right? Functions which are known to be very notorious nonlinear functions. So 

people benchmark their nonlinear optimization methods against these known things. 

And then when I publish my results, you can see which method is doing better. If I come up with 

a new method, I can say, look, hey, against this benchmark, my method works well. So I’ll post a 

link to this library of ugly functions that you can try out your various ideas on. Any thoughts or 

questions on this? It’s fairly descriptive. There’s not much derivation involved over here. So it is 

what it is. 


