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Expanding Subspace Theorem 

All right. So, what we have done so far is that we have shown, we have got the geometric 

intuition. We have also had a proof which told us that at most 𝑛 steps are required. Now, there is 

again one very powerful theorem in linear algebra which helps to formalize this. The proof is a 

slightly longer proof. I am going to do half the proof to give you the flavor of it. 

The remaining half, if you are interested, you can read it in the book. Okay. Because it will take 

a long time to drive it. But let me state the theorem. 

It is a very powerful theorem and it is used in all the analysis of this conjugate gradient method, 

ok. It has a very cool name also. It is called the expanding subspace theorem. And what is, before 

we get into the grungy details, what is the why am I telling you this? This is a way to formalize 

all the intuition that we have had about the method so far, ok. So, if you have a more theoretical 

bent of mind, you will appreciate formalizing it, formalizing all the hand-waving intuition that 

we have had so far, ok. 

So, I am just going to state the result to begin with so that we can appreciate it, ok. We, so not we 

say using the CDM. So when I say using the CDM, immediately what does it imply? There were 

two requirements for CDM, which were there? As well, okay. Asymmetric positive definite, fine. 

After that, there were two requirements, which were? Give me a set of conjugate directions and 

then do exact line search along each one of those directions, those alphas. Those, that is what 

makes a CDM, okay. 



 

So that gave me a sequence 𝑥𝑘 starting from some arbitrary 𝑥0. We were minimizing 𝜙, my 

objective function 𝜙. So, the first there are two consequences of the expanding subspace 

theorem. The first is 𝑟𝑘
𝑇𝑝𝑖 = 0 for 𝑖 belonging to 0 to 1. That is fine. 

Let us just note it down and then we will give some intuition to it, ok. And affine space. So, these 

are the two consequences of the theorem. Consequences in the sense that the relation between 

these two statements is actually an "if and only if" condition, ok. So, let us, this it looks a little 

tedious, let us just interpret this in words. So, what is the first thing saying? Remember, keep in 

mind what we are doing is we are formalizing the intuition that we have had. 

So intuitively we should immediately be able to appreciate what is going on. So, the first 

statement is saying the residual at the 𝑘’th step, that is 𝑟𝑘, is orthogonal to what? To all the 

previous conjugate directions. We kind of expected that to happen, right, because every time we 

are going along one direction, we are never revisiting it. So, whatever is the balance in that 

direction is perpendicular to the new directions it goes into, right. So, you can see how this is a 

formalization of that intuitive idea. 

That is step one. Is that clear what is being said? The residual at the 𝑘’th step is orthogonal to all 

previous directions in which I have walked. That means I never revisit a direction, right. Second, 

we all know what a vector subspace is, right. I take a bunch of vectors and I say the span of that 

forms a vector subspace because their linear combination stays within that vector subspace. That 

is a vector subspace. 

To a vector subspace if I add a constant term, it no longer remains a vector subspace because the 

origin is excluded. When I say span of vectors means linear combination of those vectors. If I set 

the coefficients of linear combination to be 0, what do I get? The origin. So, the origin always 

belongs to vector subspace. The moment I add 𝑥0 and without any 𝛼0 behind it, that means the 

origin is not guaranteed to lie inside. 



So, this makes it instead of a vector subspace, it makes it an affine subspace. Fancy way of 

saying something very simple. So, in this affine space, so what is this affine space? Take the 𝑘 

conjugate directions so far. I am at step 𝑘, take the previous, I mean take the 𝑘 direction so far. 

Out of that create some affine space, ok fine. 

 

Constraining 𝑥 to live only in this smaller space, try to minimize the objective function. It is 

saying that the 𝑥𝑘, the 𝑘’th iterate, so 𝑥𝑘 is not any 𝑥𝑘; it is the 𝑘’th iterate of my conjugate 

direction method, is actually the minimizer of 𝜙. I am interested in a global minimizer of 𝜙, that 

means 𝑥1 to 𝑥𝑛 all 𝑛 coordinates I should, I want the best thing, right. So, if I were looking at the 

total solution I would say linear combination of 𝑝0 to 𝑝𝑛−1, that is where my solution lives 

because I have 𝑛 linearly independent vectors, the solution has to be a linear combination of the 

basis function, right. That is what I want. But this is saying something a little bit different. 

What is it saying? If I restrict myself to a 𝑘-dimensional subspace. Why 𝑘-dimensional? Because 

it is being described by 𝑘 basis vectors, not 𝑛. Now, when I am restricting myself to 𝑘 basis 

vectors, what is this result saying? That by even though you are remaining constrained to a 𝑘-

dimensional subspace, the solution that you get 𝑥𝑘 is the best in terms of minimizing my 

objective function. If I want to minimize any more, I have to expand the subspace. That is why 

this name comes, expanding subspace. 

So, at every step I am doing the best possible. So, in the first, so let us take it very simple. In the 

first step, where am I? 𝑥0 + span of 𝑝0. What is that? 𝑥0 + 𝛼 × 𝑝0, that is an affine space. What 

am I doing? Finding the best 𝛼. I have a closed form expression for it, I get the value of 𝛼0. 

Can I do any better for 𝜙? I cannot do any better. This is the minimizer along, why? I am 

constrained to go along only 𝑝0, fine, I got it right. So step 0, that is why. When I add now go to 

step 2, I have now 𝑝1 also. What is the best I could do? So like this, I keep adding. 



So I am growing the subspace in which my solution lives till finally in at most 𝑛 steps I reach the 

final solution. Okay, so getting this intuitive understanding is far more important than following 

the nitty-gritty details, right? You will forget, even I forget the details of the proof after some 

time. But if you keep this in mind, how do you interpret this, right? Five minutes ago when you 

saw this, it just looked like mathematical symbols, but now it has come alive a little bit more, 

you know what is going on over here. So that’s the key thing to keep in mind. And in general, 

this is a skill all of you should develop that when you read a theorem, the first step is to get 

intimidated by it. 

The second step is to take literally every symbol and convert it into plain English. You see a 

transpose, orthogonal. You see 𝑟𝑘, you say a residual. You say 𝑝, you say conjugate direction. 

Residuals are orthogonal to conjugate direction. 

So that begins to make a kind of a geometric picture in your mind. Okay. Any questions about 

interpretation here? I am going to give you half the proof so as to, you know, just to give you a 

flavor of it, ok. We already know one thing that this residual is 𝐴𝑥 − 𝑏, okay, just to remind you, 

which is also ∇𝜙, ok. 

 

I am going to define a function ℎ, which is a function of 𝜎’s, which is something like this: 

𝜙(𝑥0) + ∑ 𝜎𝑗
𝑘−1
𝑗=0 𝑝𝑗. So how many 𝜎’s do I have? The 𝜎 over here is a vector. I have 𝑘 𝜎’s. So 

what is this function telling me? This is the function that I get by restricting my 𝑥 to be in a 𝑘-

dimensional space or an affine space. 

Is this function, is it convex? How did I define 𝜙? 
1

2
𝑥𝑇𝐴𝑥 − 𝑏. So, is this also affine, I mean is 

this also convex? Obviously, this is also convex. If it is a convex function, does it have a 

minimizer? As a minimizer, we have seen that, right. So, therefore, the answer is yes, and it has, 

in fact, the minimizer is, is it unique? For a convex function, is a minimizer unique? Okay. 



Right. So if it has a unique minimizer, that means the rate of change of this function with respect 

to each of the 𝜎’s, what can we say? So I’m asking. Close. I can write, I can, so we can expand 

this by chain rule. But what do we expect the answer to be at the optimal? 0. If this function has 

a minimizer, it will be expressed as some values of the 𝜎’s. So, the rate of change of this, 

therefore, is going to be 0 for all 𝑖 belonging to 0 to 𝑘 − 1. 

Because why? It is the best, because it is the minimizer and here is where the chain rule comes 

in. Immediately I can write this partial derivative, how do I write it? Gradient of this whole thing 

𝑥0 + ∑ 𝜎𝑗
𝑘−1
𝑗=0 𝑝𝑗 transpose, multiplied by what? If I just apply right 𝑝𝑖 = 0, right. This is just use 

of chain rule, I did not do anything special over here. I did chain rule over here and we are 

almost home. Why? Because now when I look at the expression for the residual, the ∇𝜙 is also 

the residual. 

So, this implies that this is the residual now at right, or let me put it like this: 𝑥𝑘 right transpose 

𝑝𝑖 = 0 for all 𝑖 belonging. Notice I am constraining 𝑥𝑘 to be only in the affine space, it is not in 

the entire space, it is only in this affine space and I am showing you that the residual is 

orthogonal to all the previous conjugate directions, ok. So, I mean it is not surprising, I expected 

this to happen, it is there is nothing very complicated over here, ok. So, actually what have we 

proved over here? We have said, we have assumed 2 to be true and we have proven 1, that is 

what we did right. We assumed that I pick an 𝑥 from this affine space, ok, which is the 

minimizer of 𝜙𝑘. If it is the minimizer of 𝜙𝑘, what follows? 
𝑑ℎ

𝑑𝜎
= 0, chain rule gives me this 

which leads to the residual at the 𝑘’th step is orthogonal to all previous search directions. 

So, I got my given 2, assuming 2 I got 1, ok. I can, as you can imagine, I can also repeat the 

process where I start from 1 and go to 2, ok, but we will not do it here, it is not very difficult. If 

you see the proof in the textbook, they do it by induction, it is a nice refresher on induction. 

Okay, so this is what this is, you know, all the background that I wanted to give you until we 

start in the next class with the conjugate gradient method, okay. So any doubts in what we have 

done so far? You notice there is nothing very complicated. 

We are basically this is like applied linear algebra, we are using properties of conjugacy and our 

calculus over here. So, we will do the conjugate gradient method and then as soon as we have 

done the basic version of the conjugate gradient method, we are going to have a race between 

steepest descent and conjugate gradient method and we will see how the two of them perform 

head to head. 


