
Course Name: Optimization Theory and Algorithms 

Professor Name: Dr. Uday K. Khankhoje 

Department Name: Electrical Engineering 

Institute Name: Indian Institute of Technology Madras 

Week - 05 

Lecture - 32 

 

Implementation of an optimization algorithm in MATLAB 

Okay. Any questions? Something not clear over here? If not, what we’ll do is let’s have some 

numerical fun. Let’s look at the implementation of so far what we have done, right? So this is 

your first optimization algorithm that you’ve learned, which is gradient descent. Now you are 

convinced also that it should work in theory not just numerically it should work in theory. Let us 

look at how we would code a simple implementation of it and you know there might be some 

surprising things which you would not expect. So let us fire up MATLAB over here. 

 

Now, in the same line as the proof that we did for the rate of convergence, I want to construct an 

artificial example first. That artificial example is going to be the same, 

1

2
𝑥⊤𝑄𝑥 − 𝑏⊤𝑥 

But where will I get my 𝑄 and 𝑏 from? Let me just generate it randomly. Now, if I am going to 

generate it randomly, what do I have to be careful of? If I generate an 𝑛 × 𝑛 matrix randomly, 

will it work? It won’t work. 

Why? It need not be positive definite. So I need to do a little bit of tricks to make it positive 

definite so that I could work with it, right. So this line over here rng is to initialize the random 



number generator, yes question? Even bigger, okay. Is it better now? Okay. So line number two 

is essentially telling you to initialize a random number generator with the same seed. 

Why would I want to do that? So that I can reproduce the results. Every time I run this code, I 

should be able to reproduce. If I want to do debugging and analysis, this is very useful because I 

don’t want to every time get a new random matrix. Once I’ve got confidence on how it works, I 

can knock this line off. But this is a good way of reproducing your results. 

Now I want to generate a random symmetric positive definite matrix. So this trick is very simple. 

If I just take, let’s say I’m working in 10 dimensions. So if I do this, rand(n, n) is going to give 

me a random 𝑛 × 𝑛 matrix. If I want to make it symmetric, this is all I need to do. 

1

2
(𝐵 + 𝐵⊤) 

is going to make it symmetric. No problem. Then what I do is, to make it positive definite, what 

is it that I need to play around with? I have to make sure eigenvalues are positive. So I take my 𝐵 

matrix and this 𝐼 is basically going to calculate what? Eigenvectors, eigenvalues. Eigenvectors 

will fall into 𝑉 and eigenvalues will fall into 𝐷, right? It’ll make it a diagonal matrix, right? 

Now, what do I need to change in order to make it positive definite? I need to make sure that this 

𝐷 has positive entries in it. 

So all I do is I use this randI function which is random integers, give me 𝑛 random integers, give 

me some range is given. What do I do with that? I construct a new matrix 𝐴 which has the 

eigenvectors from before but I have replaced the eigenvalues to be these random integers, 

random positive integers, greater than 1, therefore it is always going to be positive. This is just 

one way of doing it. You could just manually put in the numbers. You could do whatever you 

want because we are constructing a synthetic example, right? So this is, so my 𝐴 matrix, 

therefore, by I’ve constructed its eigenvalue, I’ve used its eigenvalue decomposition to ensure 

that it is positive definite, okay? Then what do I have? I needed a random 𝑏 vector. 

Is there, this is the simplest way, just 𝑛 random numbers, right? Now here is a shorthand way of 

writing a function in MATLAB. For those of you, who is not familiar with this way of writing, 

just seeing it for the first time? Okay, very good. So let’s just look at what is happening. So I am 

saying 𝑓, okay. At the rate 𝑥 simply says that what I am going to define after here is a function of 

𝑥. 

𝑥 is a variable, right? And after this whatever follows is the body of the function. You could also 

write this as a standalone m file as a function. It’s the same thing. This is the much shorter way 

of doing it. 

So whatever follows after this at the rate 𝑥 is the definition of the function. Could be sin𝑥, cos𝑥. 

In this case I have 

1

2
𝑥⊤𝐴𝑥 − 𝑏⊤𝑥 

That’s the example that we had looked at. So all of this hard work was required to do what? Just 

construct the cost function. 



I can also explicitly write the gradient 𝐴𝑥 − 𝑏. Is it a function of 𝑥? Yeah. Alright. So I have 

∇𝑓 

Now I also know the true solution, right? The true solution is simply what? The true solution is 

the point at which the gradient of 𝑓 goes to 0. 

∇𝑓 = 0 ⟹ 𝐴𝑥 = 𝑏 

Therefore, the solution is 𝑥 = 𝐴⊤𝑏. I am calling it 𝑥true just to make sure that I know what it is, 

right? Now, I pick a random starting point. 𝑥0 is my random starting point. 

What is it? 𝑛 random numbers. So, start from anywhere in 𝑛-dimensional space. Let us start from 

there. Now, getting into a little bit more practical territory, I need to define how many iterations 

at max are permissible. So, that is a variable which I call, let us say, max_iteration. 

For example, I have set it to 50, just for illustration, it could be whatever you want. And a 

tolerance is a threshold below which I am going to declare success. So, when the norm of ∇𝑓 

goes below this threshold, I will say, okay, this is good enough for me. I may not get 0 on 

machine precision. If I get a small number, it is okay. 

I put 10−6. If your application needs 10−12, you define 10−12. Okay. Yes. Why? Because I 

know it analytically. I could have used the gradient function to get it, I could have done it. 

 

In this case because this is more like an illustrative example, I am writing it. But I could have 

used the gradient, Hessian, all of those things. Now we want to solve this using gradient descent 

and as we just now used, we will use exact step size. The update equation is: 

𝑥new = 𝑥old − 𝛼 ⋅ ∇𝑓 



where the expression for 𝛼 is what we just wrote out recently, which you will also work out in 

the tutorial. 

So how do I start? I need to use 𝑥 as the variable that is updating, that is my iterate. 

So I am initializing it with 𝑥0. This 𝑥sd is just a way for me to keep history, that at each point I 

don’t want to forget what I had done. So I am just keeping track of it. So I am initializing it in 

this way. Similarly, the gradient is being written with this gf, and I am keeping a log of all the 

gradient values so that at the end of the process, I can analyze how the gradients looked like. 

So 𝑘 is my iteration counter. Now this is how you would write it. You would say that while the 

norm of the gradient is higher than my threshold and the number of iterations is less than the 

maximum number of iterations. A usual beginner’s mistake would be to omit this line. If I omit 

this line and if my tolerance threshold is very strict, the algorithm could take, let us say, much, 

much longer than you expect because it’s trying to get it low. But if it’s entered a very flat 

region, it makes very, very small steps. 

And you think, you know, my computer is hung or something. So this max iteration is just to 

prevent it from taking forever. And here is a step length analytical expression. I update my 𝑥, so 

𝑥new = 𝑥old + step_length ⋅ 𝑝𝑘 

where 𝑝𝑘 = −∇𝑓, and ∇𝑓 was initialized over here, okay. Then, given the new 𝑥new, I can 

calculate ∇𝑓 at the new 𝑥new because as we have seen this is just a function of 𝑥, right? If you 

give me 𝑥, I will give you the gradient. 

So I have calculated the new gradient and I am just updating my log variable so that I add the 

new norm over here and so on, right. So that is all there is in this. I am updating my 𝑥, I am 

updating my gradient, and I am keeping a log. That is all I am doing over here. And it will quit 

when the AND condition is met, so it is going to quit accordingly, okay. 

Either I run out of iterations, right, and I’m going to plot it over here. So let’s see, does it look 

like something you would expect? So what would you expect? I am plotting for example, the 

history of the norm of ∇𝑓, right? What would you expect? So it’s gonna start from a high value 

because I started with a random number. And this function is a quadratic function. It’s positive 

definite. 

So it’s a bowl like this. So I know a solution exists, right? So am I gonna go, how do you think 

the trajectory would be? And if I ask you, what is the history of norm ∇𝑓? One student says it 

should just go linearly down. Any other guesses? Like a hyperbola? Okay, let us see what it 

looks like. Let us run this. 

It also spits out something over here. This is what the convergence looks like. So I am plotting 

log(∥ ∇𝑓 ∥) instead of ∥ ∇𝑓 ∥. What do you expect? Log scale means something, right. So it is 

starting with something very high, and within the first 8 iterations, it has covered maximum 

ground, right? In log scale, it has gone from 5 to -0.5. That means, you convert it into linear 

scale, the maximum progress has happened in the first few iterations. 

After the first few iterations, what is happening? For the remaining 40 iterations, it is covering 

only about 2 units in log scale. So, this is something very typical of gradient descent. You make 



a lot of progress in the beginning, and then you kind of enter into a slow gradient zone. So if I 

had wanted 10−12 and I didn’t have a cap on the number of iterations, it would go on for a very, 

very long period of time. So this is one of the, if you want to call it a drawback or a feature of 

gradient descent, it is this. 

So many times it’s advantageous to just run gradient descent for a few iterations, get some 

improvement, and then if you have a facility to switch to a faster method, then switch into that. 

So here I was just plotting what is the norm of ∇𝑓, so you notice in the first iteration we started 

with a very high value (15), and as we went down you can see the numbers are kind of just not 

really progressing, it seems to get stuck near 0.1. Very slow progress. 

Okay. Yeah. But what is our expectation based on? Correct. Yeah, so that is why I said that you 

should expect some surprises over here. Right. Correct. So, I mean, this is one of the first 

surprises that you feel when you look at this trajectory. If you look at it in the log scale, actually, 

it is clear. 

It is like an L shape. The first L is very sharp and then after the kink it is slower. So, if I look at it 

in linear scale, it will actually look like a hyperbola. 

Question: Why is it wavy right now? Why is it wavy? 

I do not have a good answer for you right now. This kind of small oscillatory behavior is known 

and seen in many numerical methods. Remember, this is not a function value. The function value 

will always decrease. This is a plot of the norm of the gradient. This is exact line search because 

I put 𝛼 analytically equal to the exact line search angle, right? So this is as kosher as gradient 

descent can get. 

For a circular contour, it was a single step for a circular contour. That would be when all the 

eigenvalues are the same. So actually, we can look at what the eigenvalues are over here, which 

are sitting here in dp. 

So, these are my eigenvalues. Remember 𝜆𝑛 − 𝜆1, that expression is going to be some ugly 

number over here. Yeah, in fact, 2 is the smallest, 100 is the biggest. So the condition number is 

not very bad. 

So those of you seeing this kind of code for the first time, anything unclear? This is a very 

standard way of defining functions in shorthand rather than having to separately define M files 

for the function and looping it in this way. 

So, what is the condition number? Let us see. So what we could do is we could type in, for 

example, norm of, we started at 𝑥0 and we went to 𝑥true, right? So, it is 1.48 when I started, and 

when I ended, I think 𝑥 should still contain the true solution, I mean the final solution. So if I do 

𝑥 − 𝑥true, that gives the norm. So if I run it for more iterations, I can get even faster. 

Pure quadratic convex? No. No, I do not think you can. Yeah. So, in fact, because it is a pure 

convex quadratic, you could just do Newton’s method starting from 𝑥0 and you will reach the 

solution in one shot. But anyway, the purpose of this is to illustrate how you code a real-life 

algorithm. I would not call it real-life because I am writing it exactly as the method is. 



So, if you were writing this for a real-life problem, what would you change? 𝛼, I don’t know 

how to calculate in a real-life problem. 

So what would I replace 𝛼 with? Backtracking line search is one way. I don’t know 𝛼, so I will 

do backtracking line search until I get a good enough 𝛼, which satisfies, for example, Wolfe 

conditions. Actually, on a related note, you had asked the question yesterday. When we proved 

the convergence, we assumed a few things, right? The function is bounded from below, we 

assumed that 𝛼 obeyed the Wolfe conditions. And so there was a good question about there 

being one relation for sufficient decrease and the second being a condition for curvature. Why 

should it be that there is an 𝛼 that satisfies both? 

It’s not clear, I didn’t prove it. It turns out that if 𝐶1 is less than 𝐶2, you can prove that there is an 

𝛼 which satisfies both. I’ll post a proof for that on the class website. But that’s all you need to 

make sure that an 𝛼 exists that satisfies both conditions. 

Any other questions? Convergence in MATLAB. Okay, let’s do that. So, let’s replace it here. 

Okay? So I’m just putting one everywhere. I don’t need this subplot. Let’s remove this subplot. 

Let’s run it. 

Notice something very different over here. Let’s see if the other graph is still open. Is it open 

still? Yeah. 

So, this was the first case, and this is the second case. Notice one big difference. What is the x-

axis here in the new graph? Iterations. I mean, it was still iterations earlier. But what is it saying? 

1 and 2. That means I started, basically in one step, I reached. And look at the log scale. I started 

with something that is not in my hand, right? But where am I ending? −35 in log scale. It’s 

basically error is 0. When the eigenvalues are the same, and that came to us from the theorem, 

which is why we should not be surprised. 

And this is also the power of knowing some theory behind what you are doing. Otherwise, you 

would never know, right? So, you know, you can try to engineer ways by which your condition 

number is better, and there are a lot of numerical tricks where before you start working with your 

problem, you try to do some shaping of the condition number to make it better, and this is the 

reason why. Instead of 50 iterations ending up at log scale −2, I end up in basically one iteration 

or two iterations at log scale −35. 

Can we know the condition number? Yes, very much. So, let us do it, to know the condition 

number, it is quite simple. I just have to run this once again. Let us comment this and here it 

comes. So MATLAB simply has this. 

Oh sorry, it is 𝐴. So for the tutorial problems also that you have, you can just use this MATLAB 

command to get the condition number. 

To get some starting point, yeah. To get the orthogonal eigenvectors. And then I just change the 

eigenvalues. I mean, there are various ways in which you can do this. If you wanted to, with this 

code, you could just modify it to plot. 

Actually, you cannot visualize in 10 dimensions. Here we took 𝑛 = 10. If you took 𝑛 = 2, you 

could actually plot a trajectory of 𝑥0, 𝑥1, 𝑥2, 𝑥3 with non-dots, and you will be able to see that 90-

degree thing happening over there, zigzag. And as you vary your eigenvalues, you will see how 



stretched or whatever it is and you can see the zigzag there or it go away, right? So you can use 

this code as a starting point to really understand many things. And just for fun, instead of making 

𝑛 = 10, make 𝑛 = 106 and see how much time it takes. 

If you are doing gradient descent, yes, I do not know how to prove it. So, for that every time you 

cross a contour, you should be orthogonal to it in some sense. Then you will keep going along 

that. Correct. Correct. Yeah, if you are doing exact line search and your starting vector, starting 

negative gradient was pointing straight at the solution, right? Which is what happened here, 

when I made all the eigenvalues the same. 

Correct. We will have to think about it, like are there some really funny counter cases where it 

does not happen. It is not very clear immediately, what you are saying. Correct. You can start at 

the four corners of it, and you will reach in one shot because your trajectory is always orthogonal 

to the contours. The gradient and contour are always perpendicular, so you just fall straight into 

the solution. 


