
Course Name: Optimization Theory and Algorithms 

Professor Name: Dr. Uday K. Khankhoje 

Department Name: Electrical Engineering 

Institute Name: Indian Institute of Technology Madras 

Week - 04 

Lecture - 27 

 

Line Search - Analysis 

We will start nevertheless. So I am going to read out some of the doubt sheet questions. There 

was one question about the Armijo rule. So the question is, can you give a better intuition for 

having 𝐶1 in the Armijo’s rule? So the Armijo rule is, you can see it in front of you right now. 

What did it say? That the function value should be below the linear approximation of the 

function, but not exactly the linear approximation of the function; we modified the slope to be 

this orange line over here. I put 𝐶1 to reduce the slope a little bit from the original slope of the 

linear approximation. 

 

The intuition behind it is, as I mentioned in the previous class, that I can have a little bit more 

relaxed criteria. The most relaxed criteria would be 𝐶1 = 0. That means the function value 

should just be less than the value of the function at 𝑥𝑘; that is really, I mean, that is anyway 

going to happen because of sufficient decrease and it being a descent direction. So, we are trying 

to — this is like a tuning knob you have in your hand; there is no theoretical guarantee or proof 

that it should be some value or the other. This is something that you will locally use to fine-tune 

your rate of convergence. 

So, there is nothing very deep about it. Choosing 𝛼, choosing the perfect 𝛼 implies 𝜙′(𝛼) = 0; 

this results in taking a step that blows past our minima, and then we take turn around to take a 

small step. Well, if you chose your perfect 𝛼, you would land up at the correct solution, right? So 



you will not go past. But this is always an issue that if I choose too big of a step size, I can go 

past my solution, in which case I need to come back. 

 

So the backtracking line search algorithm which I gave you works on that principle. I start with a 

large step size and start walking back until some of the conditions are satisfied, and I say, ok, this 

is a good step length. I think there was a small typo in the curvature condition. So, let us look at 

the curvature condition. Slope of the linear approximation at 0 in the at 𝑥𝑘; instead of — well, I 

think it is correct. It is exactly what is written here. 

If we do not know the exact function that is, all the data points that we have are (𝑥, 𝑓(𝑥)), then 

we do not know what 𝑓 is. Why not just keep track of the minima while collecting all the values? 

The question is clear. So, we said that when we spoke about the intuition over here, which was, I 

think, this graph right? That we do not know the shape of this graph because this graph is 

expensive to calculate. So, the question is, if we do not know the exact function and only we 

only have the data points, why do not we just sort of pick points and keep track of the minima? 

Does the optimization part come when we model a random function and compare the minima as 

a metric of how good the function approximation is? 

So, and related is: I do not understand the point of 𝛼; if function evaluation is expensive, then 

using derivatives Hessians as a condition to check if 𝛼 is a good learning rate is contradictory. If 

the bounds on 𝛼 are found by function evaluation, we might as well evaluate the function at a lot 

of points and find the minima, right? As always, as they say, the devil lies in the details. Right 

now, if your function — if for example, I take three points — so supposing I pick three random 

points and with three points and a function of single variable, what is the best I could do in terms 

of fitting a polynomial? Three points I can fit a parabola. Right now, if I can fit a parabola, so 

you know, supposing — let us say, right? So, I pick one point here, one point here, one point 



here. Now with these three points, I fit a parabola, and I automatically know that this is the best 

point, right? This is the minima point. 

 

Now, if I were only taking function values and samples, it will take me forever to reach this 

point, and even when I reach a point, I will not have any guarantee that there is no other better 

point available. So one of the assumptions that we are making throughout this course is that the 

functions that we are dealing with are continuous, and not just continuous, they are also 

differentiable. So, calculus gives us nice ideas of smoothness which we can use. That is why a 

few function evaluations, like three function evaluations, is giving us a good approximation, a 

second order approximation. 

So, in this case, it is justified. Going purely by function values is always going to be more 

expensive without any guarantee that you have hit the correct point, right? So, it is a lot of trial 

and error, and we do not want to rely on trial and error, ok. So, the sort of underlying assumption 

to be kept in mind is continuity and differentiability, and calculus gets you a lot more than just 

simple function evaluations. 

So, does that clarify? Whoever this student’s doubt was, ok, I guess. So, today we are going to 

talk about line search, the analysis part. Convergence is what we are going to talk about. So, let 

us write that out. Line search analysis. 

Now, you have already seen the backtracking line search algorithm. So, backtracking line search 

algorithm was basically — let us just recap that before we get into analysis. So, we spoke about 

backtracking line search, which was basically: I have 𝑓(𝑥𝑘 + 𝛼𝑝𝑘); this should be — if I am 

taking the sufficient decrease condition, this function value should be less than what? Right, so 

𝑓(𝑥𝑘) + 𝐶1𝛼∇𝑓𝑘
𝑇𝑝𝑘 right, and this was 𝐶1, and I am going to say repeat until this holds true and 

you keep updating 𝛼 like this. That was a very simple update; it required function evaluations, 

only one gradient, and that is this gradient at 𝛼 = 0. 



The second — so, if you look at the optimization literature, there are lots and lots of different 

tricks that people have tried instead of backtracking line search. So I am going to give you just 

one more example, which I referred to just a few minutes ago of another trick, which people will 

do. Let us say that 𝜙(𝛼) — we all know what 𝜙(𝛼) is. Now, I give you, for example, 𝜙′(𝛼); I 
calculate this, I calculate this, and I calculate 𝜙′(0), pick some — pick any 𝛼 and calculate this. 

So, this gave me three points, three different values of either 𝜙 or 𝜙′. What I could do with it is, 

next is to fit a parabola. Right? Once I fit a parabola, I could, analytically, come to the point at 

which that function is minimized, and I pick that to be my best 𝛼. 

 

So, here I am not doing backtracking line search; I am doing quadratic fit, minimizing the 

quadratic function and choosing that as my best 𝛼. So, this is going to be good as long as the 

quadratic approximation is good. So, if I pick a very large 𝛼, it is not likely that the function is 

going to be a quadratic function starting from 𝛼 = 0 all the way to 𝛼 = some large number, 

right? So, again, I have to pick a reasonable number. Right? So, fit a quadratic. Once you get a 

hang of this idea, you can go a little crazy with it. I can take — instead of 3 points, I could take 𝑛 

points and interpolate a polynomial. 



 

Once I interpolate a polynomial, I can see are there multiple minima; I could fit a cubic, a 

quintic, whatever, and come to those points. So, you will find variations of this throughout the 

literature. Now, as it turns out, all of these tricks are not going to fundamentally change the rate 

of convergence. The rate of convergence, as we will derive later in this lecture or possibly in the 

next lecture, is linear; there is nothing that you can do to beat linear. 

Let us now try to understand, first of all, does this line search method, for example, using 

steepest descent or gradient descent — does it converge? If it converges, at what rate does it 

converge? 

So, I am going to draw a graph over here; a better version of that is on the class notes, ok? I am 

going to try to draw it over here. So, let us — what I am drawing are the contours of the function. 

So, what are contours? Lines on which the function value is the same. So, think of them as cross 

sections of a hill. So, this is one; this is one. 

So, I am trying to draw something elliptical. And let us say I start at this point. This is my 

starting point. Now, if this is the starting point, let us say that these contours are such in such a 

way that 𝑓 — this is let us say 𝑥1, 𝑥2 direction; let us say 𝑓 is a function of two variables. So, 

starting at this point, let us say I go to the right to this point; I will have some function value 

here; then, I will go down here; so this function value would be lower than what I was there 

before. 



 

So, steepest descent implies that I am always going to go in the direction of negative gradient. 

This is essentially what I am going to do: I will go this way. Now, you might think that every 

time I go, it is just going to get me closer and closer to the minima. However, if you see the 

trajectory I am going to take, it is going to zigzag like this rather than go directly to the minima. 

This is very interesting because, when I look at the trajectory, what I am going to find is that the 

step sizes appear to be decreasing, so they look something like this. 

So, I go from this point to that point; then I go from that point to that point; then I go from that 

point to this point; this is essentially my trajectory that I am taking as the steepest descent is 

zigzagging down this way. The other thing that I observe is, you see, the trajectory appears to be 

roughly perpendicular to each of the previous steps. So, I can see that. So, I am going to define 

the distance between points as 𝑆𝑘. 

So, let us just draw that here. Let me denote this as 𝑆𝑘, this as 𝑆𝑘+1. So, what I want to show is 

that if you observe the step, this is the one that I just drew above. So, I want to prove that 

𝑆𝑘
𝑇𝑆𝑘+1 = 0. 

So, I will write 𝑆𝑘 = 𝛼𝑘𝑝𝑘. Now, using that step, I can write the whole trajectory. So, every time 

I take a new step, I update that new point to be 𝑥𝑘+1 = 𝑥𝑘 + 𝑆𝑘 right. So, 𝑥𝑘 + 𝛼𝑘𝑝𝑘. 

Now, once I have 𝑥𝑘+1, I can plug it in and plug it back to the function; I can write down the 

value of the function as the value of the function at the previous point plus the new step size. 

Now, using the derivative condition; using exact line search condition — so what we have is that 

the subsequent steps are actually going to be perpendicular. 

In practice, when you implement backtracking line search, you do not really hit those exact 

perpendicular trajectories, but theoretically, there is a strong case for it. 



Conclusion 

So, in summary, the backtracking line search is going to be a very good idea. We have talked 

about all of this; however, we do not have an exact convergence rate as a function of the original 

parameter; it may or may not yield a faster convergence in terms of the rate. The idea of line 

search, backtracking or otherwise, does have significant advantages, but the results may not 

always translate into practical applications. 


