
Course Name: Optimization Theory and Algorithms 

Professor Name: Dr. Uday K. Khankhoje 

Department Name: Electrical Engineering 

Institute Name: Indian Institute of Technology Madras 

Week - 04 

Lecture - 26 

 

Backtracking Line Search 

We now have our acceptable range for 𝛼, but the question remains: how do we actually choose 

𝛼? Until now, we’ve only discussed tests for determining whether a given 𝛼 is good enough, 

such as the sufficient decrease condition, Wolfe conditions, and the strong Wolfe conditions. But 

now, let’s discuss the simplest algorithm for actually finding 𝛼. This algorithm is called the 

Backtracking Line Search. 

 

1. Starting Point for Alpha 

When picking 𝛼, should you start with a very small or a very large value of 𝛼? The answer is a 

large 𝛼, especially if you’re ambitious or impatient. Starting with a large 𝛼 might get you lucky 

sooner. So, begin with a large 𝛼 and check whether the chosen condition is satisfied, for 

example, the sufficient decrease condition: 

𝑓(𝑥𝑘 + 𝛼𝑝𝑘) < 𝑐1 ⋅ linear approximation. 

If this condition holds, accept 𝛼. If it doesn’t, reduce 𝛼 using the following rule: 

𝛼new = 𝛼old ⋅ 𝜌, 

where 𝜌 ∈ (0,1) is a reduction factor. 



2. Why Backtracking? 

The algorithm gets its name from the fact that we start with a large 𝛼 and keep backtracking, i.e., 

reducing 𝛼, until the condition is satisfied. In this example, we used the sufficient decrease 

condition because it is cheaper to compute than the curvature condition (which involves 

evaluating gradients). However, if evaluating the curvature condition is easier in a particular 

case, you could choose that instead. 

3. Algorithm Summary 

 

The Backtracking Line Search is one of the most common techniques for determining 𝛼. The 

basic steps are: 

• Start with a large value of 𝛼. 

• Backtrack by reducing 𝛼 until the chosen condition (e.g., sufficient decrease) is satisfied. 

• Update the point: 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑝𝑘. 

• Repeat this process until ∇𝑓(𝑥𝑘+1) is close to zero, indicating convergence. 

4. Outer and Inner Loops 

There are two loops in this method: 

• The inner loop checks for a good value of 𝛼 by backtracking. 

• The outer loop checks for convergence by evaluating the gradient ∇𝑓(𝑥𝑘+1). 



If the gradient at 𝑥𝑘+1 is small enough, we have reached the solution. 

5. Practical Considerations 

The algorithm has a heuristic flavor. When we say "large" 𝛼, we don’t mean arbitrarily large 

values like 106, because those wouldn’t be useful. A common heuristic is to normalize the 

direction 𝑝𝑘 to unit length and start with 𝛼 = 1. The reduction factor 𝜌 is typically chosen as 

something like 0.8, meaning that 𝛼 is reduced in a geometric progression: 

𝛼new = 0.8 ⋅ 𝛼old. 

In about five steps, 𝛼 can decrease to 10−5, at which point it might be accepted. 

6. Adaptive Step Sizes 

As you approach the solution, smaller values of 𝛼 are more likely to work. Therefore, in practice, 

𝛼 may vary from iteration to iteration. We can denote it as 𝛼𝑘 to reflect this: 

𝛼𝑘 may change in each iteration. 

7. Summary of Line Search Algorithms 

We’ve discussed the need for inexact line search because exact line search is computationally 

expensive. The key conditions we use are: 

• Sufficient Decrease Condition: Ensures the function value decreases enough, compared 

to a linear approximation. 

• Curvature Condition: Ensures the slope is sufficiently small. 

To prevent overshooting, we introduced the modulus of the slope, which leads to the strong 

Wolfe condition. Backtracking Line Search is one of the simplest algorithms for determining 𝛼, 

relying on only first- and second-order Taylor approximations. 

8. Challenges in Practical Implementation 

Although the algorithm appears simple, practical implementation involves some heuristics, such 

as choosing the starting value for 𝛼 and tuning 𝜌. These parameters affect the rate of 

convergence, but too large a step may cause you to miss the solution, while too small a step 

slows down convergence. Furthermore, different iterations may require different values of 𝛼𝑘, 

especially as you approach the solution, where smaller step sizes are more effective. 

Finally, while the algorithm is easy to understand conceptually, it becomes more complex when 

implemented in high-dimensional spaces, where exact solutions are infeasible and line search 

algorithms must rely on function and gradient evaluations to navigate towards the optimal 

solution. 


