
Course Name: Optimization Theory and Algorithms 

Professor Name: Dr. Uday K. Khankhoje 

Department Name: Electrical Engineering 

Institute Name: Indian Institute of Technology Madras 

Week - 04 

Lecture - 25 

 

Strong Wolfe Conditions 

The Strong Wolfe Conditions are an enhancement over the basic Wolfe conditions, aimed at 

providing more robust control in line search methods for optimization. Let’s break down the key 

points discussed here: 

 

1. Slope and Descent Direction 

The function’s slope, 𝜙′(𝛼), is negative for small values of 𝛼 when searching in a descent 

direction, as 𝜙′(𝛼) relates to the gradient: 

𝜙′(𝛼) < 0 for small 𝛼 since 𝑝𝑘 is a descent direction. 

2. Need for Strong Wolfe Condition 

The basic Wolfe condition imposes restrictions on the slope, but a problem arises once 𝛼 

surpasses a stationary point. Beyond this point, 𝜙′(𝛼) changes sign, allowing the basic Wolfe 

condition to be trivially satisfied (which could lead to overshooting). 

The solution is to replace the negative slope constraint with a modulus of the slope, leading to 

the Strong Wolfe Condition, which ensures that the slope at any step does not overshoot beyond 

acceptable bounds. 



3. Curvature Condition 

 

The curvature condition is modified by applying a modulus to the slope, thereby creating a 

constraint that better manages step sizes and prevents overshooting, particularly past local 

maxima or stationary points. 

4. Range of Acceptable Alpha 

The Strong Wolfe Condition reduces the acceptable range of 𝛼 values compared to the basic 

Wolfe conditions. This is necessary to avoid overshooting, especially in non-convex functions 

with multiple local maxima. 

5. Computational Cost 

The main cost of implementing the Strong Wolfe Condition lies in the evaluation of 𝜙′(𝛼), 
which involves gradient calculations. 

For each step in the line search, 𝜙′(𝛼) needs to be computed, which can be done using finite 

differences. For an 𝑛-dimensional function, this requires 𝑛 + 1 function evaluations, making it 

computationally expensive, especially in high-dimensional spaces: 

Function evaluations needed: 𝑛 + 1. 

However, parallelization (using multiple cores) can reduce computation time by distributing 

function evaluations across different processors. 



6. Preventing Overshooting 

 

By applying the Strong Wolfe Condition, the algorithm prevents large steps that might take it 

past a local maximum, ensuring that the solution stays within a "bracketed" range that balances 

convergence speed with stability. 

7. Convex Functions 

In the case of convex functions, the regular Wolfe conditions (with minor adjustments) are 

sufficient because the function has a single global minimum. The Strong Wolfe Condition is 

more useful in non-convex cases with multiple local maxima. 



8. Trade-offs in Line Search 

 

While more aggressive methods can be used to deal with flat curvature, the Strong Wolfe 

Condition provides a balance by rejecting very small 𝛼 values and preventing overshooting 

without the high computational cost of second-order methods. Nonetheless, gradient evaluations 

are necessary, and in high-dimensional problems, these evaluations can be expensive. 

Gradient evaluation cost: 𝒪(𝑛). 

By using the Strong Wolfe Conditions, you ensure that your optimization method carefully 

brackets the solution without overshooting, while also controlling step sizes more effectively 

than the basic Wolfe conditions alone. 


