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Wolfe Conditions 

Let us take an aside before diving in. Now I want to calculate a quantity that will be needed 

frequently. How do I write this in terms of 𝑓 and 𝑝? What is the expression for this? Recall the 

definition of 𝜙(𝛼): it is simply 𝑓(𝑥𝑘 + 𝛼𝑝𝑘). So, which of the theorems of calculus can be used 

here? We can use the chain rule. Let’s derive it explicitly in two dimensions to get a good grasp 

of it. 

 

Consider 𝑥𝑘 as a two-dimensional vector: let 𝑥𝑘 = [
𝑥1
𝑥2
]. Similarly, 𝑝𝑘 is also two-dimensional: 

let 𝑝𝑘 = [
𝑝1
𝑝2
]. Therefore, 𝜙(𝛼) becomes a two-dimensional vector: 

𝑥1 + 𝛼𝑝1, 𝑥2 + 𝛼𝑝2. 

Now, applying the chain rule to 
𝑑𝜙(𝛼)

𝑑𝛼
, we get two partial derivatives: 

𝑑𝜙

𝑑𝑥1

𝑑𝑥1
𝑑𝛼

+
𝑑𝜙

𝑑𝑥2

𝑑𝑥2
𝑑𝛼

. 

What is 
𝑑𝑥1

𝑑𝛼
? It’s simply 𝑝1. Similarly, 

𝑑𝑥2

𝑑𝛼
= 𝑝2. Therefore, the result becomes: 



𝑝1 + 𝑝2. 

 

In compact notation, what is the partial derivative of 𝜙 with respect to 𝑥1 and 𝑥2? It’s the 

gradient of 𝑓. So, we have: 

𝑑𝜙(𝛼)

𝑑𝛼
= ∇𝑓(𝑥𝑘 + 𝛼𝑝𝑘)

⊤𝑝𝑘. 

This small result gives us the relationship between 
𝑑𝜙(𝛼)

𝑑𝛼
, 𝑓, and 𝑝, and will be useful later. 



Sufficient Decrease Condition 

 

Now let’s discuss the first of the Wolfe conditions, called the condition of sufficient decrease. To 

understand this, imagine we are given two pieces of information at 𝛼 = 0: the function value 

𝜙(0) and the derivative 𝜙′(0). These are the minimum information needed to proceed. The 

descent direction is also given (which could be the gradient descent direction, conjugate gradient 

direction, or Newton method direction). 

If we only know 𝜙(0), the simplest model we can construct is a constant function, i.e., 𝜙(𝛼) =
𝑓(𝑥𝑘), which is just a zeroth-order approximation. The next step is to construct a more 

sophisticated model using the derivative information. This leads to a linear approximation, based 

on the first-order Taylor expansion: 

𝜙(𝛼) = 𝑓(𝑥𝑘) + 𝛼∇𝑓𝑘
⊤𝑝𝑘. 



 

If we set 𝛼 = 0, the expression simplifies to: 

𝜙′(0) = ∇𝑓𝑘
⊤𝑝𝑘. 

The idea of sufficient decrease is that the function value at the new point, 𝑥𝑘+1, should lie below 

this linear approximation. In other words, the function value at 𝑥𝑘+1 must decrease more than 

this linear approximation predicts. 

However, in practice, this condition tends to be too strict, so it is relaxed by introducing a small 

factor 𝑐1 ∈ (0,1). This gives us the condition: 

𝑓(𝑥𝑘 + 𝛼𝑝𝑘) ≤ 𝑓(𝑥𝑘) + 𝛼𝑐1∇𝑓𝑘
⊤𝑝𝑘, 

where 𝑐1 is typically a small number, often around 10−4. This is known as the Armijo rule, 

which relaxes the linear approximation by allowing more step lengths. 



Curvature Condition 

 

The first Wolfe condition focuses on function values, while the second, called the curvature 

condition, looks at the derivative values. The goal is to ensure that at the new point 𝑥𝑘+1, the 

gradient should ideally be zero. Mathematically, this means: 

𝜙′(𝛼) = ∇𝑓(𝑥𝑘 + 𝛼𝑝𝑘)
⊤𝑝𝑘 = 0. 

Since exact line search is often impractical, we relax this by saying that the derivative at 𝛼 

should at least be smaller than the derivative at the current point, but not too small. We introduce 

another factor, 𝑐2 ∈ (0,1), to allow this relaxation: 

∇𝑓(𝑥𝑘 + 𝛼𝑝𝑘)
⊤𝑝𝑘 ≥ 𝑐2∇𝑓𝑘

⊤𝑝𝑘. 

This condition ensures that the step size 𝛼 is not too small, which would lead to very slow 

progress. By balancing the two Wolfe conditions, we ensure that the step size is neither too small 

nor too large, allowing the algorithm to progress efficiently. 


