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Unconstrained Optimization - 5 - Properties of Descent Directions Steepest Descent Direction 

So, let us start with the doubt sheets. So, there is a student who has misheard and heard the 

complete opposite of what I said. Sir, you said that we will be dealing with convex functions 

only, the other way right. We will not be dealing with only convex functions; we will be dealing 

with functions in general. They may be convex; they may not be convex. Now do we need to 

check whether the optimization function is convex before solving the problem for exams and 

assignments? 

I do not think you should make any assumptions about whether the function is convex or not. For 

convex functions, a local minima is a global minima, but are the majority of the objective 

functions convex? If not, is finding a local minima sufficient? So, we discussed this in the 

previous class, right? For convex functions, a local minima is a global minima. So, if you have 

found a minima, that is it; your search is over. But that said, I would say that most real-life 

engineering problems are not convex, ok. 

People try really hard to somehow make a convex approximation of their problem, and the 

reason is simple: once you do that, you just need to find one solution. So, this right in the 

beginning of the course we had spoken about the complexity of modeling the problem versus 

how simple it is to solve the problem. So, if you make it really simple and make it convex and 

solve it, then you have to see how realistic that model is, right? So, it is never an easy answer. 

Could you share some open research problems and papers on choosing the initial points and the 

other things? So, before we get to research problems and papers, let us go clear our textbook 

material first, right, which is what we are doing now. 



 

Can we also have a lecture on semi-definite programming on the formalism and methods? So, 

semi-definite programming is a very nice technique; I hope that towards the end of the semester 

we will have some space for this, ok. Could you explain the geometric meaning of continuity of 

Hessian? I think we spoke about this briefly last time. The Hessian has four functions; I mean, 

the Hessian has all second-order mixed partial derivatives inside it. So, whatever idea you have 

of continuity, you apply to each one of those guys. I cannot think of any special geometric 

meaning of continuity of Hessian. 

The geometric interpretation of Hessian is there that it talks about whether the bowl is upward-

opening, downward-opening, saddle point, or none of these. That is the geometric interpretation 

of Hessian. But continuity of Hessian, I do not think is anything special. So, I am happy that 

there are some simple questions being asked because if this is the doubt, then it is better to get it 

clarified. So, let me put the question to the class. 

So, let 𝑥 ∈ ℝ𝑛 and if I write a function like this, this is the optimization problem: is it 

unconstrained or is it constrained? This is clearly unconstrained. What would make it 

constrained? Right. So, I could either write it like this such that 𝑥 ∈ some set or the simpler way 

is just to, you know, get rid of this and you write. It conveys the same thing. So, here you can see 

its constraint because 𝑥 is not free to live anywhere; it is forced to be in some set 𝛺 (capital 

Omega), and this is a very general way of writing it. You can also have variations of this; you 

could have, for example, minimum like this and 𝑥 such that 𝑔(𝑥) ∈ some set. 

So, this is also a type of constrained optimization that you are now seeing; the function of the 

optimization variable is constrained. So, there are all sorts of flavors available. Is the quasi-

Newton method faster than Newton, and if so, what is the rate of convergence? So, we will look 

at Newton and quasi-Newton rates; I mean algorithms in detail as we go. Newton is as fast as it 

gets with quadratic; quasi-Newton obviously will not be as fast, but it gets close. Which direction 

is considered good in the case of a non-convex function? What is actually meant by being stuck 



at a local minima? So, these are things that we will spend a lot of time talking about, but again, 

this is a basic question. 

 

So, let me clarify it. What is meant by saying being stuck in a local minima? It just means that if 

I am, let us say, I start my optimization from here; I am over here, and at this point, I ask, should 

I go up or down if I want to get to a minima of the function? Obviously, the answer is to go 

down. I have to take a step to the right. So, if I start walking over here and I come over here, now 

any move in this direction or in this direction from this point will increase the function value. So, 

I will not take it right now. If this function, on the other hand, happens to be something like this, 

then once I have reached here, I will never get out of here. Even though the true solution is here, 

there is no mechanism for me, in the way that we have spoken about so far, to get there. 

So, this, you would then say that the algorithm is now stuck in a local minima, ok. And 

remember, I am showing you a one-dimensional plot; imagine this in one million dimensions; 

you cannot plot diagrams and see where you are, ok. So, that is the intuition of being stuck in a 

local minima. Is there something similar to the Hessian for a function defined from ℝ𝑛 to ℝ𝑚? 

So, you could always define a Hessian for each of the output function values. It is a mess to keep 

track of it, but that is how you have to do it. 

Here is a question that deals with the revision of your linear algebra. Does positive definiteness 

always infer the invertibility of the Hessian? So, let us take it step by step. We wrote the Newton 

direction; can someone remind me what the Newton direction was? Minus. Right. This was the 

definition of the Newton direction, which we will derive; you do not have to remember it, right? 

Now, this in, and we said that the Hessian should be positive definite. We just stated it; we are 

here to prove it, and the question is that, remember, I made a statement that the Hessian should 

be positive definite, but the question is: does positive definiteness always imply invertibility of 

the Hessian? That is the question. Is it enough for me to say that the Hessian is positive definite  



 

for this guy over here, right, for this guy over here to exist? Is there a yes, no, or depends? Yes. 

Because? So, the explanation from linear algebra is correct that if this is positive definite, it 

implies that all the eigenvalues 𝜆𝑖 are strictly greater than 0, and remember, for a positive 

definite matrix, how did I write the eigen decomposition of the matrix? Can I write this Hessian 

in terms of the product of three matrices? What was it? 𝑉 (Eigen decomposition, not singular 

decomposition). So, let us use the standard symbol, let us say 𝑄, next would be 𝛬 (capital 

lambda). 

 



Next would be 𝑄𝑇 (transpose). Are you sure? So, there is a transpose that we have to get correct 

over here. Let us assume it is real-valued. So, if I put the transpose over here, right. 

So, this is correct. Now, what was the property of 𝑄? What was in the columns of 𝑄? 

Eigenvectors. Eigenvectors, and what is the property of eigenvectors? They are all orthogonal, 

right? That means, each of these, I mean. So, therefore, if all the columns are orthogonal, that 

means it is full rank and invertible. That means 𝑄 is invertible; obviously, 𝑄𝑇 is invertible. 

Eigenvalues are positive; therefore, this guy is a diagonal matrix with 𝜆𝑖’s over here. A diagonal 

matrix with greater than 0 entries can trivially be inverted. So, if it is enough for me to say that 

the Hessian is positive definite because now you look at this expression, I can take the inverse on 

both sides; it is guaranteed to exist, which is why we said positive definite, not positive semi-

definite, because if positive semi-definite, one eigenvalue being 0 means I cannot invert it, right? 

So, that is the requirement; this is fine, ok. 

Alright, so we have been talking about descent directions. I think we have just stated the descent 

directions; I mean the property of the descent directions, right? What is the first property? Did 

we state it? I think that was the second property. What would be the first property? It is the 

direction; the steepest descent direction is −∇𝑓. I am going to put a 𝑘 here. 

The moment I put a 𝑘 here, you know what that means, right? It means ∇𝑓 evaluated at 𝑥𝑘. So, 

that means what do I mean by this 𝑑𝑘? I want to evaluate the function 𝑓 at some point. So, if I 

think about this, I want to make it a little bit clearer. I am going to write the Taylor expansion at 

some point 𝑥𝑘. 

So, I will just say that 𝑥𝑘 is the point where I am currently at. The function value 𝑓 at this point 

is given by 𝑓(𝑥𝑘). That is straightforward. The first thing is that the function at the point 𝑥𝑘 is 

just 𝑓(𝑥𝑘). I am going to add 𝑡 here, where 𝑡 is the step length; we will get to that later. 

Now, I want to evaluate the Taylor expansion at this point 𝑥𝑘 + 𝑡𝑑𝑘 where 𝑑𝑘 is the direction. 

What is the first-order Taylor expansion? I know there is a Taylor expansion; let us just write 

down the first few terms; I will write it as 𝑓(𝑥𝑘 + 𝑡𝑑𝑘). 



 

I need to evaluate it as 

𝑓(𝑥𝑘) + 𝑡𝑑𝑘
𝑇∇𝑓(𝑥𝑘) +

1

2
𝑡2𝑑𝑘

𝑇𝐻𝑘𝑑𝑘 + 𝑜(𝑡2) 

I hope everyone is clear about this notation; is it correct? So, where 𝐻𝑘 is the Hessian. What 

happens if I try to minimize this expression? So, I am going to put the next line as minimize. So, 

I want to minimize this over the choice of 𝑡. Therefore, I can take the gradient with respect to 𝑡, 
right? I will set it to 0; I will ignore the higher-order terms for a moment. 

What do I get? So, the gradient with respect to 𝑡, if I set this to 0, what do I have? I have 

𝑑𝑘
𝑇∇𝑓(𝑥𝑘) + 𝑡𝑑𝑘

𝑇𝐻𝑘𝑑𝑘 = 0. 

This gives you the 𝑡 optimal at this step length for this particular direction. If I do the algebra 

correctly, I will get 

𝑡 = −
𝑑𝑘
𝑇∇𝑓(𝑥𝑘)

𝑑𝑘
𝑇𝐻𝑘𝑑𝑘

. 

I think there is an issue here that I need to take into account; this should be negative, but I am 

guaranteed that 𝑑𝑘 and the Hessian must be such that the 𝑑𝑘
𝑇𝐻𝑘𝑑𝑘 must be greater than 0; 

otherwise, I am not going to get the step. 

This will give me a minimum value, and if I substitute this back into this 𝑓(𝑥𝑘 + 𝑡𝑑𝑘) 
expression, I will get that is greater than or equal to 𝑓(𝑥𝑘) for all 𝑘 that is taken. Therefore, this 

is a descent direction. It shows that if I move in the direction of −∇𝑓, that gives me the steepest 

descent. 



Now, we have already said that the steepest descent direction exists, and there are many methods 

of calculating it. So, how do I find it? It is a linear approximation of the function at that point. 

This is a good place to conclude the properties of descent directions. So, let us now summarize 

this section of descent directions before we take a break. 

 


