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Unconstrained Optimization - Overview of Algorithms and Choosing a Descent Direction 

Overview of Algorithms 

So, now the next thing is having gotten this, let us just talk sort of give an overview of the four 

main families of algorithms that we will talk about in this course. The basic philosophy always is 

you know start from some point 𝑥0, then you are going to go undergo a sequence of iterations. 

Let us call these iterations. Very rarely would you have a case where you go from start to the 

solution in one shot; that happened in high school problems, not in real-life engineering. 

Hopefully, you land up at the solution, 𝑥∗. 

Now, what distinguishes all of these algorithms is how you go from 𝑥𝑘 to 𝑥𝑘+1; that is where all 

the details differ. As I have mentioned, there are two families over here: one is called line search 

and the other is called trust region. Our overall optimization of going from 𝑥0 to 𝑥∗, when I talk 

about the real nuts and bolts, what is it going from 𝑥𝑘 to 𝑥𝑘+1. 

 

If I write it like this, supposing this is my 𝑥𝑘, I am standing over here, here is 𝑥𝑘+1. We are in a 

vector space; that means for example, 𝑥𝑘 and 𝑥𝑘+1 are 𝑛-dimensional vectors. Between these two 

points, I need to specify two things: one is a direction and a length. That is how I will get from 

here to there. 



So, this direction I can give it a symbol 𝑝𝑘. The common symbol for how much I should walk 

along this direction is 𝛼𝑘. I can think of this as length and this as direction. Having done this, I 

get a chance to show you formal notation in optimization which is used a lot. Let me write it 

down. 

 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘 

I am at 𝑥𝑘, but I do not know what 𝑝𝑘 to take and I do not know what 𝛼𝑘 to walk. My 

optimization process is a journey or a process to find out 𝛼𝑘 and 𝑝𝑘. Those are the variables of 

my optimization. I will write this as 

minimize min {𝛼𝑘, 𝑝𝑘} 

When I write min, it means minimize whatever is to the right of it. So, minimize min. Below the 

word , I should write down what are the variables of my optimization. So, what are the variables 

of my optimization? 𝛼𝑘 and 𝑝𝑘. 

If I just write min, this would mean minimize this whole thing. You may have seen this notation 

written in a lot of papers, and now you know what that means. The variables of optimization are 

below, and the objective function is to the right of min; this is what it means. 

There is another related thing that you will see: you will find argmin. Now, what does that mean? 

It means basically arg means arguments. So, what are the arguments to this objective function? 

They are 𝛼∗ and 𝑝∗. So, the optimization problem was to minimize, but at each step, I need to 

solve this optimization problem argmin means tell me what are the arguments that minimize this 

function; they would be 𝛼∗ and 𝑝∗, which would get me to 𝑥𝑘+1 = 𝑥𝑘 + 𝛼∗𝑝𝑘. 



So, that is the meaning of this. Whenever you see a textbook or a paper saying min or argmin, 

look for what is below. Those are the knobs in your hand. Nothing else can be changed. For 

example, notice 𝑥𝑘 was not in my hand. Why? Because my algorithm has found itself at 𝑥𝑘. 

 

It’s given to me. I cannot change it. What I can change is where I go from there. So I have a 

freedom in choosing 𝑝𝑘. I have a freedom in figuring out how much to walk along that. 

My first-order, second-order theorems are going to help me figure out these directions and 

distances. That is the name of the game. We will start by talking about line search algorithms 

because they are the most popular algorithms. In fact, you know what everyone loves these days; 

machine learning takes one of those members of that family. 

Line Search Algorithms 

Line search algorithms correspond to different choices of 𝑝𝑘. The first and the simplest is the 

steepest descent or gradient descent; the two mean the same thing. Over here you do not try to 

find out 𝑝𝑘 at every step; you take it as a recipe, and I take this to be equal to the negative of the 

gradient. This is your steepest descent or gradient descent algorithm. 



 

Why we choose this, I will prove it to you shortly. This is the first one. The second one is very 

powerful, called the Newton method. In this, again we will prove it; I will note down the 

expression that you have is the Hessian comes in with an inverse. 

𝑝𝑘 = −𝐻𝑘
−1∇𝑓𝑘 

But this is not enough; you also need the Hessian to be positive definite. These are, that is why I 

have written it as an AND condition. If the Hessian is positive definite, then you can plug in this 

expression and get your 𝑝𝑘. 

The third method was invented because the second method ended up being very expensive. If I 

have a function of many variables, calculating second-order derivatives can become very 

computationally expensive. So, people came up with tricks to approximate the Hessian. 

Therefore, the word itself is explanatory; they are called quasi-Newton methods. 

For all points where you are running the iteration, the quasi-Newton method basically does not 

work with the Hessian; it does something like this: 

𝐵𝑘 = approximation of the Hessian 

 



Just one word of why this Newton method is very popular; we will state this as we develop in 

more detail. The rate of convergence, remember we had spoken about the rate at which 

sequences can converge, turns out that the Newton method has a quadratic rate of convergence 

whereas the steepest descent has a linear rate of convergence. 

So, that can mean the difference between hours and minutes in your simulation or your problem 

getting solved. So, this is quadratic. If you have a high-performance computing cluster where 

you can compute the Hessian, use it; do not go for gradient descent. 

The fourth method is something very interesting; it is based on a first-order method, but much 

more clever than a first-order method. Many of you may have heard of it; it is called the 

conjugate gradient method. We will spend a fair amount of time on this conjugate gradient 

method as well. 

Here, the cleverness comes from how I choose my 𝑝𝑘. The 𝑝𝑘 if I just wrote this as negative 

gradient, it becomes gradient descent. What is clever is that it does not take just this; it modifies 

it from the previous direction it had been in. 

So, it writes it as a linear combination of the negative gradient. Now, how we choose this 𝛽𝑘 is 

there is a lot of very elegant and clever math over here, and this gives us a little faster rate of 

convergence than the conjugate gradient. The other great advantage of methods 1 and 4 is that 

they can easily be generalized to non-linear methods, non-convex functions, and so on. Any 

questions so far? 

Now, we have mentioned everywhere different choices of 𝑝𝑘. We want to find out are there any 

restrictions on how we can choose 𝑝𝑘; how do we design 𝑝𝑘? These formulas are given to us; we 

will derive them. But before we go to that, let us just write down a little bit more rigorous 

conditions on what this 𝑝𝑘 should satisfy. 



These are what are called descent directions, and we are talking about the requirements on them. 

Descent is clear because if I am at some point, I want to minimize it; I need to go in a direction 

where there is a descent of the function value happening. 

They are called descent directions. The first condition is that the direction of steepest descent 

anyone wants to guess? The negative gradient. If you were in a hurry to climb down a hill for 

example, literally take the example of a hill; if you stand here, the best direction to go is this 

way. 

So, the first requirement is that my objective function decreases when I move in the direction of 

𝑝𝑘. It is that simple. We can write it as 

∇𝑓𝑘
𝑇𝑝𝑘 < 0 

So, this is a condition for descent. We want our 𝑝𝑘 to be something such that if we take the dot 

product with the gradient of the function, it is negative; then that means I am walking downhill; 

if it is positive, I am walking uphill. 

The second condition is a bit subtle, but it becomes very important when we start looking at 

various forms of optimization and whether the optimization methods converge or not. So, one of 

the things that we want from our descent direction is that we can ensure that we do not take a 

step that is too big because if you take a step that is too big and we will prove this and show you 

examples of it, you might overshoot the minimum. 

So, we have to be careful about that. So, the second condition we will write down is the length or 

the norm of the step should be controlled. So, for example, I can say that we have a norm; we 

have some upper bound 𝑀 and say that ∥ 𝑝𝑘 ∥< 𝑀. 

Now, you can tweak 𝑀 depending on your optimization problem. So, these are the two 

conditions. You need to have a direction 𝑝𝑘 such that the angle between 𝑝𝑘 and ∇𝑓𝑘 is acute, and 

the second one is the length of the step should be controlled. So, those are the two things that we 

want. 

As I said, these algorithms typically you can pick from there. Now, we will talk about the line 

search algorithms, and one very good way of thinking about line search is that at each iteration I 

am going to generate a direction 𝑝𝑘 from the previous iteration. But I am going to try different 

lengths along that direction. 

So, the way to write this is you can think of the step as a one-dimensional optimization problem. 

So, if you write down 

𝜙(𝛼) = 𝑓(𝑥𝑘 + 𝛼𝑝𝑘) 

So, I am trying to minimize 𝑓 along a line. I have already selected my direction; it is known. I 

am going to see what is the best length along that direction; that is the essence of the line search 

algorithm. 

The notation is sort of standard; the two notations you will see quite often is either this 𝜙(𝛼) or 

some papers may write it as 𝑓𝑘(𝛼), in which case you have 𝑓𝑘(𝛼) = 𝑓(𝑥𝑘 + 𝛼𝑝𝑘). Now what are 

you going to do? You are going to optimize 𝛼. 



So, you will be looking for a point 𝛼∗ such that 𝛼∗ gives you the minimum function value when 

you move along the line defined by 𝑝𝑘. You are going to call that your optimal length, and we 

will use that to move to the next iteration 

 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼∗𝑝𝑘 

So, that is the method of line search; it is very powerful because I am already using a good 

direction. Now, I just need to find a good length. It is very fast, but it can also be very costly to 

do this line search because you might need to do a lot of iterations to do that, especially if it is a 

very complicated function. 

So, the goal of line search is to try and reduce the cost of each step as much as possible. The first 

thing I want to show you is that how do you know when to stop? How do you know when to 

stop, and there are conditions that are known for this as well. Typically, what happens is you 

compute the value of the gradient at 𝑥𝑘 and you check for its magnitude. 

If it is too small, it means the function is flat, and the condition typically we will write is that 

∥ ∇𝑓𝑘 ∥< 𝜖 

So, it is telling you that my function has stopped changing or it is nearly stationary. I am at a 

point where I do not need to go anymore. So, typically, this is one of the common conditions that 

you will see. 

So, you will see that when it is less than some small tolerance, and you will notice the epsilon is 

typically very small, something like 10−4 or 10−5, or depending on how precise you want your 

solution to be. And of course, what happens is this will depend on your optimization problem, 

but it is a good criterion to start with. 



The second thing is this that at each step you are not going to move; if your step does not give 

you a sufficiently good improvement, I will stop. So, you will typically see that I can measure 

the ratio of improvements in my function value; I can say that the improvement should be larger 

than 𝜂, and 𝜂 typically will be between 0.01 to 0.1. 

So, these are the two conditions that are sort of common and how you can check when to stop. 

We will illustrate this through examples; we will give you a lot of nice problems in practice. 

The third thing is we are just not interested in how to pick the direction. We also want to talk 

about what do you do if the algorithm fails. What do I mean by that? Well, sometimes the 

optimization may get stuck in a local minimum, and it would not be able to get out of it. 

So, one of the common strategies to try and escape local minima is to perturb your variables. So, 

when I have gotten to this point, I can do something like this; I can go back to some previous 

point or a random point nearby and start the algorithm again. This is what is called perturbing the 

starting point. In fact, it is a very very common practice in optimization algorithms, and you may 

see it in machine learning. 

The last thing is just to summarize. So, line search algorithms, as I have mentioned to you, are 

generally popular because they are simple to implement and they are easy to work with. In the 

next class, we will take a deep dive into gradient descent; we will look at the proofs and the 

geometry of optimization because it is one of the simplest methods, and once you understand 

that, we will move on to the more complicated ones. 


