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Summary of Background Material - Calculus 3 

Convexity 

We discussed convexity in relation to three different aspects: the convexity of points (convex 

combination of points), sets, and functions. The question raised was: can convexity be checked 

using a double derivative test? 

 

To clarify, we refer to the convexity of a function. When we visualize a function, it may appear 

concave yet is described as convex. For a function to be convex, any convex combination of the 

function values must maintain this property. The double derivative test can confirm this. The 

double derivative captures changes in the first derivative, indicating convexity when 𝑓″(𝑥) ≥ 0. 

This means that if the double derivative exists and is non-negative, the function is convex. 

In the case of multivariable functions, the equivalent of the second derivative is known as the 

Hessian matrix. We will delve into this concept further in our discussions on second-order 

methods, often referred to as Newton methods. 



Convex Combination 

For convex functions, the parameter 𝛼 must lie between 0 and 1. We previously proved 

continuity for the 𝑝-norm with 𝑝 = 2.  

 

If we consider different norms, we need to address the concept of equivalence of norms, which 

states that if we obtain a result for one norm, we can derive bounds for another norm through 

specific constants. 

Gradient Descent 

Next, a question arose regarding the use of gradient descent in machine learning, particularly 

concerning loss functions and backpropagation.  

Gradient descent is favored because it is a simple yet effective algorithm that scales well with 

problem complexity. 

Continuity 

We also explored the difference between uniformly continuous and Lipschitz continuous 

functions. A Lipschitz continuous function restricts the rate of change of the function, indicating 

that the derivative is bounded. This prevents sharp transitions in the function’s behavior. While 

uniformly continuous functions also exhibit controlled change, not all uniformly continuous 

functions are Lipschitz continuous. However, it is established that every Lipschitz continuous 

function is uniformly continuous. 



Derivatives in Multivariable Calculus 

We then transitioned to discussing derivatives of multivariate functions. The definition of the 

derivative can be daunting.  

 

Starting from high school calculus, we recall that the derivative is defined as a limit. If 𝑓 is a 

function, we express this as: 

lim
𝑦→0

𝑓(𝑥 + 𝑦) − 𝑓(𝑥)

𝑦
. 

This limit exists if the function is differentiable. 

In the context of ℝ𝑛, the gradient is denoted by ∇𝑓, which consists of partial derivatives: 

∇𝑓 =
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. 

Fréchet Derivative 

If the gradient exists for all 𝑥 in the domain, the function is said to be differentiable. When the 

gradient is continuous, the function is continuously differentiable. 



In terms of functions 𝑓:ℝ𝑛 → ℝ𝑚, this represents multiple outputs from multiple inputs. For 

instance, optimizing various factors such as time, fuel, and exertion leads to a more complex 

objective function. The Jacobian matrix captures the relationship of the gradients in this case: 

𝐽 =
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, 

which has dimensions 𝑚 × 𝑛. 

 



 

Chain Rule 

Lastly, we discussed the chain rule. For functions 𝑥:ℝ𝑛 and 𝑦:ℝ, the derivative can be expressed 

as: 

s

 

𝑑𝑦

𝑑𝑡
=

𝑑𝑦

𝑑𝑥
⋅
𝑑𝑥

𝑑𝑡
. 



In the multivariable context, for ℎ(𝑡) = 𝑓(𝑥(𝑡)), the derivative generalizes to: 

𝑑ℎ

𝑑𝑡
= ∇𝑓𝑇 ⋅

𝑑𝑥

𝑑𝑡
, 

where ∇𝑓 is the gradient vector. 


