VLSI Design Flow: RTL to GDS
Dr. Sneh Saurabh

Department of Electronics and Communication Engineering
HIT-Delhi

Lecture 54
Clock Tree Synthesis (CTS) and Routing

Hello everyone, my name is Jasmine Kaur. I am a PhD student at IIIT Delhi and I am
your TA for the course VLSI Design Flow RTL to GDS. Welcome to tutorial 12. In the
last tutorial, we have looked at the various steps of chip planning including the floor
planning and power planning. Now after that we also looked at the placement step and
now in this tutorial we will look at the next steps of physical design that are clock tree
synthesis and routing and also after that we will perform parasitic extraction. In the
previous tutorial, we looked at this gcd nangate45.tcl file.

So again in this I have created two subscripts in which in one strict script I will be
performing clock tree synthesis and the second script is for the complete flow from the
clock tree synthesis and then the global routing and detailed routing step. So let us first
look at the clock tree synthesis step. So in these firstly these are the steps that we already
did in the last tutorial and now we will start with clock tree synthesis. So firstly we
repair the clock inverters.

So this basically clones the clock tree inverters next to the resistor loads so that CTS
does not try to buffer the inverted clocks. Now we are performing the clock tree
synthesis and here we give the list of buffers and the sync clustering is enabled here and
the diameter for sync clustering is given. Then we repair the clock nets. This is because
when we perform clock tree synthesis there may be long wires from the pad to the clock
tree root. So we need to insert buffers in these long wires.

asminek@DESKTOP-L1URDLI: € qadit d pangatallt conv t+c1

open v ﬂnvrvicts.tclr
(gedit:2631): WARNING A B e

79 report worst slack -min -digits 3

80 report worst slack -max -digits 3

81 report_tns -digits 3

82 # Check slew repair

(geclit'263l)' WARNING - 83 report check types -max slew -max capacitance -max fanout -vieolators

(gedit:2631): WARNING

85 utl::metric [rsz::repair design buffer count]
(gedit:2631): WARNING 2 86 utl::metric [expr [sta::max slew check slack limit] * 100]
87 utl::metric [expr [sta::max_fanout_ check slack limit] * 1@0]
" 88 utl: :metric [expr [sta::max capacitance check slack limit] * 100]
(gedit:2631): WARNING 2 P
90

(gedit: . WARNING : 91 # Clock Tree éynt‘hs‘sis S
92

93 # Clone clock tree inverters next to register loads
(gedit: : WARNING g 94 # so cts does not try to buffer the inverted clocks
95 repair clock inverters

96

(gedit : WARNING : o7 ARSI root buf $cts_buffer -buf list $cts buffer \
asmine {TOP-L1URDLI: -sink_clustering enable \
-sink_clustering_max_diameter $cts_cluster_diameter

(gEdit: : WARNING : 101 # CT5 leaves a long wire from the I,md to the clock tree root.
102 repair clock nets

edit: : WARNING 3 e
(g 104 # place clock buffers
105 detailed _placement
(gedit: : WARNING : 106
107 # checkpoint
. . 108 set cts db [make result file ${design} ${platform} cts.db]
(gedit: : WARNING #*: 109 write db §cts_db

110

(gedit: : WARNING : 111 et ¥
112 # Setup/hold timing repair
113
(gedit: : WARNING : 114 set propagated clock [all clocks]
115
o 116 # Global routing is fast enough for the flow regressions.
(gedit: ¢ WARNING : 117 # It is NOT FAST ENOUGH FOR PRODUCTION USE.

Tel v Tab Width: 8 »

So this is next we are doing this detailed placement. So placement of these clock
buffers that are placed in this clock tree synthesis and then finally we are creating DB
files. Then we perform a set of whole timing repairs. Now after the clock tree synthesis
we have actual latencies and actual timing of the clocks. So we need to again check the
setup and hold and repair the design.

So firstly what we are doing is we are estimating the parasitics here. So either we can
do that using global routing or we can just estimate on the basis of the placement. But
since global routing is not fast enough for production use so we will be using placement
based parasitic estimation. And after we have the parasitics we will perform repair
timing. So in this the setup and hold violations are repaired by downsizing of the cells or
using high VT cells.

Then we are reporting the different timing reports. The worst slack for hold and set up
time and total negative slack and other things. Now after that we will perform detailed
placement after we have done the resizing and we have to place the CTS, clock tree
synthesis. Then we are here creating DB files and writing a Verilog file. Now we will
run this.

So this is how the layout looks after the clock tree synthesis step. So let us see in this
instance we have this clock tree option. So here we can see the instances that are inserted
after the clock tree synthesis. So we can see this is a clock buffer. So all these cells that
are here are the clock buffer cells that are inserted in the clock tree synthesis step.

Now we can see the clock tree using this clock tree viewer that is there in this windows
tab and pressing this update button we can see the clock tree of the fly lines of the clock
tree. So this is coming from the clock pin and going to this buffer and this main buffer is
supplying the clocks to these four buffers. And finally that goes to sequential cells. Here
also we can see this is the clock pin going to the one buffer and then that is given to the
four buffers and then finally to the standard cells. The next step.

] OpenROAD
File View Tools Windows Options Help
Fit Find Inspect Timing

Display Control

@ o
via3 v
metald
v

0.02 ns

,GW
|0.04n§

4 nf

S R P S S S)

wBEs
Efasasasagasas

+ Clock tree vV
Level shifter
Macro

|_0.05 n
s
+ Pads

e

. 0.06 ns

“ In.. Hierarch.. Tmi.. DR... | ClockTr

stilization® [format %.1F [expr [rsz: utilization] * 180]]
ign area® [sta::format area [rsz::design area] 0]

checkpoint

set dpl _db [make result file s{design} s{platform}_dpl.db]
write db sdpl_db

set verilog_file [make_result_file s{design}_s{platform}.v]
write_verilog $verilog file

Selected/Highlighted Shapes | Scripting

Let us look at the next step of routing. So we will source this flow dot tcl file in the
script file that we are using. So gedit flow dot tcl file in this. So the first step here is
global routing. So in this firstly we are giving the pin access.

So here we define the routing layers for accessing the pins of the standard cells. Then
we are setting the route guide output file and finally we perform the global routing. Here
we perform the global routing and the number of congestion iterations to check for a
congestion overflow is 100 here. Then we set the verilog file and write the verilog file
for the global routing step. Here we are checking the antennas if any antenna violations
are there and after that we do the filler placement.

So the filler cells are placed in this step and then we check for the legality of the
placement of these filler cells if they are legal or not. Then here we are writing the db
file. Then the next step is detailed routing. In this again we are giving the routing layers
for the pin access. Then we are doing detailed routing.

For this we are first using the set thread count to find the number of processors and the
number of processors available. So the detailed routing step will be done parallelly

within multiple multi thread options. Then this is a detailed routing step in which we are
giving these different options. We are generating the output DRC file and the different
options are given here that you can look at. Then we are writing the guides file and then
again we are checking the antenna violations if there are any antenna violations.

And here we don't have any antenna and there will be no antenna violations in our
design. So if there are any antenna violations we can repair that using the repair design
option. And then we are writing the db and def files. Then the final step is parasitic
extraction to find the RC values. So for that firstly we need to have a RC file that is
given in the NANGATE 45 library folder and in that we are extracting the parasitics and
then writing the standard parasitic extraction format file.

If we don't have these RC files then we estimate the parasitics based on the global
routing. And after we have these parasitics we generate the final reports in which we
generate the reports for worst slack for hold and set up total negative slack and different
reports for different paths are generated here. And we are checking the power, the clock
skew, the floating nets and the design area. So to run this. So this is the layout that is
generated after the complete flow.

So here we can see for the signal nets the routing is done or not using this signal nets
option. Firstly let us include the instances as well. And I have just taken the standard
cells and now these are the signal routes that are going from the signal nets that are going
from the pins to the different cells. And then these are the clock nets.

- apenkaaR
Tocls Windows Options Hielp

A’

*o
o
"f#mm” -

Inspect Timing
* Clotk Tree Viewer

defaull = Upgap

> =
] |

Hierarch . Tim DR.. Clock Tr.

utl::metric "DRT::mex fanout slack” [expr [sta::max femout
ull::melric "DRAT::mox_tapacilance sl " [expr [sla:mox_c
& repo)

check slack limit] - 109]
pacilance check sleck Limil] * 100];

SelcctedfHighlighted Shapes | Saicling

These are the clock nets. So these are all the complete layout again with the power and
ground nets. And in instances let us check for these filler cells that we included. So

these are the filler cells that are included in the design everywhere they are included. So
these are the different options that you can explore. Then in this heat maps option we can
look at the placement density.

So we can say the dark blue area is where the density is more. This is the power
density. So the red areas are having more power. This is the routing congestion. And
then we can see the clock tree view here.

fau] OpenROAD
File View Tools Windows Options Help
At Find Inspect Timing

Display Control

= Inspector

@
Welltap ? 3 Name Value
Type Inst
Tie high/low CIT Name FILLER D_4 385
Antenna v oW Block ged
Cover v Master FILLCELL X32
Bump v W Descrip... Fill
Gther v W Placem... PLACED
» Blockages v W Source ... DIST
Rulers 2 @ Dont To... False
g - 3 s
Pin Markers v v 33600
LoNScks - Mlerms 2 items
VDD <none>
+ Instances ol vss
Scale bar BBox (166440,33600), (178600,36100)
Fills
Access points
Regions v oW
Detailed view v
Highlight selected v
Module view v
Manufacturing grid
GCell grid
+ Timing Path v
- Heat Maps "
Placement Density
Power Density v -
Routing Congestion % ! = L!
IR Drop

T n. Hierarch... Timi... DR.. ClockTr...
seripting
utl::metric "DRT::max fanout slack” [expr [sta::max fanout check slack limit] * 180]
utli:metric "DRT::max_capacitance slack® [expr [sta::max_capacitance check slack l\mw] * 1001 ;
report clock period as a metric for updating Limits
utl::metric “DRT::clock period® [get property [lindex [all clocks] 8] period]
not really useful without pad lacations
#set_pdnsin_net voltage -net $vdd net name -voltage $vdd voltage
#analyze_power_grid -net $vdd_net_name
TCL commar

Selected/Highlighted Shapes Scripting
FILLER 0 4 385 -81073, 3440!

So this was all about today's tutorial. So we have covered the complete physical design
flow and you can look at the different scripting commands that I use and their options in
the open road github. I will provide you with the link to this and that's all for today.
Thank you.

