
VLSI Design Flow: RTL to GDS

Dr. Sneh Saurabh

Department of Electronics and Communication Engineering
IIIT-Delhi

Lecture 7
Chip Planning and Placement

Hello everyone. My name is Jasmine Kaur and I am a PhD student at IIIT Delhi. I am
your TA for the course VLSI Design Flow RTL to GDS. Welcome to tutorial 11. In this
tutorial, we will look at the various stages of chip planning that include floor planning,
power planning and placement. So for this, we will be using the Open Road app that we
installed in the last tutorial.

So now let us see what are the inputs that will be required by the Open Road tool to
perform the chip planning. So these are the files and folders, example files and folders
that were there in the Open Road test folder that we saw in the last tutorial. So in this
tutorial, we will be looking at the gcd example using the nangate45 library and this is the
Verilog Netlist that we will be using. And the gcd_nangate45.sdc file is the constraint
file that we will be using.

So let us see the library files. So in the Nangate45 folder, we have these library files.
So Nangate45_typ.lib we will be using and the physical information of the technology
files and the standard cells will be in these Nangate45_stdcell.lef and Nangate45_tech.lef
files. So the script that will be running is this gcd_nangate45.tcl file. So now let us look
at this script file gcd_nangate45.tcl .



So in this file, firstly, we are sourcing some files. So this helpers.tcl and flow_helpers.tcl
file contains the helper functions and this Nangate45.vars file contains the variable
values defined in this. Then we are defining some variables like the design variable for
the name of the design, which is gcd, the top module name that is gcd and we are giving
input synthesized Verilog file and input constraint file using these variables. Then we
are giving the die area and core area. This is given in LX, LY, UX, UI format.

So what is this LX, LY is it is the bottom most bottom left corner coordinates and UX,
UY are the top right coordinates. So knowing these two coordinate values, we can find
the die area and the core area. Then finally we are sourcing flow.tcl files. So this file
contains a script for complete physical design flow. So let us see what is there in this file.

So in this file we can see firstly we are reading the library files using read libraries. So
this is defined in the flow_helpers.tcl file. This is a procedure defined in this file. Then
we are reading the Verilog file and link design is used to flatten the design. Then we are
reading the sdc file here.

And next we can see floor planning is being done in this file. In IO placement, macro
placement, global placement, clock tree synthesis, detailed placement, global routing.
So the complete flow of the physical design is being done in this flowfloor.tcl file. So
what I have done is I have broken down this file into subscripts so that we can see step
by step how things are happening. So let us see I have created a gcd_nangate45_copy.tcl
file.

In this we will be sourcing the different script files turn by turn. So firstly we are doing
floor planning. So let's source this flow_floorplan.tcl file. So in this file firstly we are
initializing the floor plan. And this site here defines the list of sites to make rows.



So basically this is the unit tile that has the minimum height and width of a cell to be
placed. So cells are placed in multiples of these sites. Then we are defining the die area
and core area. And then we are writing the def file. So this is a design exchange format
file that contains the physical design information.

And then we are sourcing the tracks_file type. So in this source tracks_file we are
adding routing tracks to the floor plan. And then remove buffers are used to remove the
buffers that are inserted by the synthesis tool. Now we will be doing IO placement using
the place pins command. Here we are doing random pin placement.

And we are defining the horizontal and vertical layers that will be used. Then macro
placement. So firstly we will be checking if there are macros then we will place them
using global placement. And then we will place the macros and we will specify the hello
and channel. Then the next step is tap cell insertion.

So tap cells and cap cells are added here which prevent latch up and guard against the
manufacturing damage to cell gates that are close to the border. And then we are writing
the def file. So let us run this first script. openroad -gui for GUI option. Then we can
create a log file using the -log option.

And then we give the input script that needs to be run. So gcd_nangate45_copy_tcl file
. So here we can see that we have a core area and we have a die area. Then these are the
standard cell rows. So we can zoom in and these are the standard cell rows in which the
standard cells have to be placed.

If we zoom in further, so this unit tile here, this is the site. And then these are the IO
pins and these IO pins are random for now. So we have placed them randomly in this
step. Then also we can see no macros have been created because the tool did not find any
macro blocks in this design. Then after that tap cell insertion.

So we can have a look at the tap cells from this option instance physically. So these are
the tap cells or we can save well taps. And we can see that these are created at the
boundary of the core. Let's check that. So we can see this is the core and they are at the
boundary of the core.

So next let us go to the next step which is power distribution network. So let us look at
the flow_pdn.tcl file. So in this file we are firstly sourcing the pdn_cfg file. So what is
this file? This file defines the global connections which are VDD, VSS. It defines the
voltage domains, defines the power grids for standard cells and macros.



And finally this pdngen it builds the power grid. Then we are writing the def file for
this. So now let us run this. So here we can see that power grids and the power
distribution network has been created. So we can see that in nets option here that no
signal and no clock nets are created yet.

And these are the power nets and these are the ground nets. So this is the complete
power distribution network. Now moving on to the next step for global placement. So
let's source the global placement flow script. So let us see what is happening there.

So firstly we are setting global routing layer adjustment here. So why is it being done is
it is used by the global router during placement to estimate and avoid the congestion. So
it is basically a congestion estimate being done here before we can do the global
placement. Then we are setting the routing layers for signal and clock. And here we are
setting the macro extension.

That means we are setting the number of g cells or routing means that need to be added
to the blockages boundaries from the macros. And now we are doing the global
placement which is routability driven. Here we are defining the density, the target
placement density and we are adding the paddings to the left and right of the cells. Now
we do the IO placement. Now this time the IO placement is optimized.

And now we can write a db file and a def file. Then in this step we are repairing the
maximum slew capacitance fan out violations and normalizing the slews. So firstly we
source the layer_rc file This is nangate45_rc file which contains the resistance and
capacitance of each metal layer. Then we set the wire rc for the signal and clock nets.

This is used for delay calculation. Then finally we are setting don't use cells which are
used to remove from the consideration by resizer. Then we are estimating the parasitics
after the placement. These will be considered during the repairing of the design which
we are doing in this repair design and we are giving the slew margin and capacitance
margin. So what is this repairing of design? What happens in this is we insert the tool
inserts buffers on the nets to repair the maximum slew, maximum capacitance, maximum
fan out violations and also on long wires to reduce the rc delay and it also resizes gates
to normalize the slew.

Then we are repairing the tie fanout . So when some netlist is any when a netlist pin is
connected to logic 0 or 1 then we can insert a tie cell whose gate is always tied to VDD
or VSS. So that is the purpose of this here and now let us run this. So we can see these
red blocks. These are the standard cells. So global placement of standard cells is done



and we can see there is some overlapping of cells for now because we have just done the
global placement and not legalized the placement.

So there is some overlapping and we can also see that these cells are not inside the
standard cell rows that are there. Now you can see these pins have also changed their
position and now they are placed according to the optimizations. They are optimized
locations. Moving on to the next step. So the next step is for today's tutorial. The last
step is the flow of detailed placement.

So let us see what is happening in this detailed placement. So first is setting placement
padding. So in this placement pads are added on the left and right. This is done to leave
room for routing in the further steps and then finally we do the detailed placement and
then we are reporting the different setup hold slacks and total negative slack. So
different timing reports we are generating and then we are checking the report check
types and we are finally writing the def files and verilog files.



Now let us run this step. So now as we zoom in we can see now the standard cells there
are no overlapping there and they are now placed inside the legal standard cell rows.



And we can see the ground and power nets as well. So this was all for today's tutorial.
We will cover the next steps in physical design that is clock tree synthesis and the routing
step in the next tutorial. Thank you very much. Thank you.


