
VLSI Design Flow: RTL to GDS

Dr. Sneh Saurabh

Department of Electronics and Communication Engineering
IIIT-Delhi

Lecture 39
Basic Concepts of DFT

Hello everybody, welcome to the course VLSI Design Flow RTL to GDS. This is the
31st lecture. In this lecture, we will be discussing some basic concepts related to design
for test stability or DFT. Before proceeding further, let us recap what we had discussed
while taking an overview of testing.

So we had discussed that there are some design tasks which are
carried out during the design phase that is while we are
transforming our design or implementing our design and taking it
from RTL to the final G of final layout during those during the
design step or during the design process, we carry out certain
design tasks which are basically targeted for testing and these
design tasks make testing more cost effective and efficient. So these
design tasks which are targeted for testing are grouped together and
called as design for test.

Now before proceeding further, let us also recap how testing is
done. So the most popular method of doing testing is using
automatic test equipment.



So in this testing method what we do is that we take the fabricated die and apply test
patterns on those fabricated dies with the help of automatic test equipment and see the
actual responses that are obtained for the fabricated die. If the actual responses match the
expected responses then we say that the given die has passed the test and this die will be
allowed to go to the next go to the customer or go to the packaging and so on.

If there is a mismatch between the actual responses and the expected response then we
say that the testing has failed and then we reject that die and that die does not go to the
customer or is not processed further. So this is how the testing of our manufacturing test
is done. Now for this manufacturing test to be a more testing process to be more efficient



we need to make some changes in our design. We need to insert some logic and test
structures into our circuit so that our circuit becomes more testable. So this process of
making changes in our design is related to or the design task which makes these changes
to our design those are known as design for test or DFT task.

And the other other important step that is carried out during or during the design process
is to extract test patterns which need to be applied to the fabricated die and also the
expected responses . So these are some of the design tasks which are targeted for testing
and in this lecture and in the next three lectures we will be looking at these design for
test or these these tasks which are targeted for testing or DFT task . Specifically in this
lecture we will be first looking at some basic concepts related to DFT. Now for carrying
out testing we use a testing method which is known as structural testing. So let us first
understand what structural testing is.

Suppose we have a circuit which implements a Boolean function with n input. Suppose
there is a circuit and we have n inputs and Boolean variables and inputs are there and it
is producing some output . Now if we want to test this circuit how can we do it? One of
the ways can be that we apply test patterns that are the possible values that can come at
the inputs of the circuit . So we apply those test patterns for example 0 0 0 0 1 and so on.
So if there are n variables then 2 to the power n different combinations are possible and
then for each combination we check what is the value y produced by this circuit and
compare whether it is as per expectation or not .

So this method is known as functional testing and this is the same and this kind of
thing we have already looked at when we discussed functional verification of our RTL .
Now this technique will become infeasible if we have a very large number of Boolean
variables for example say if the n is 50 . If n is 50 then the number of test patterns that
we need to apply will be 2 to the power 50 and then we are off in a limit and to apply so
many test patterns it will need a lot of time and therefore the cost of testing will increase
. So the cost of testing depends on how much time we spend for a given die on the AT
equipment or automatic test equipment. If there are a large number of test patterns that
we need to apply then we need to keep that a given die for a longer duration on the AT
and therefore the test time will increase and therefore the cost of testing will also
increase and therefore when n is large then we cannot afford to do functional tests.

So in that case what we do is that we follow another testing paradigm which is known
as structural testing. Now what do we do in structural testing? In structural testing we
test the components that implement a logic function. So we go deeper into this circuit C
and there will be logic gates inside this which will be used to realize this Boolean
function. So we will be actually testing these components which are there inside our



circuit individually . So test the components that implement a logic function rather than
testing the input output functionality .

So that this testing paradigm is known as structural testing. In structural testing we are
not not testing the input output behavior of our circuit rather we test each individual
component in our circuit and if the individual components are found to be good then we
say that our circuit is passing the manufacturing test ok. So the the the paradigm of
structural testing is widely employed in in in manufacturing test in VLSI in in in the
semiconductor industry and why why it is it is very popular the reason is that it reduces
the number of test patterns that is required to to ensure the our or perform testing
efficiently is comparatively much lesser for structural testing than with the than with the
with the functional testing. Therefore the structural testing paradigm is widely employed
in the semiconductor industry. So now let us look into the functional differences between
functional testing and structural testing in more detail.



Suppose we are given this circuit which is shown here so in this circuit there are say 4 or
5 NAND gates G1, G2, G3, G4, G5 5 NAND gates. And there are 1 x 1 to x 16 there
are 16 input ports . Now if we want to do functional testing of a functional testing of this
circuit then how many test vectors will be required. So since there are 16 input, input
ports will require 2 to the power 16 or 65,536 input combinations . So this many test
vectors will be required if we do functional testing or the input output if we are trying to
compare the input output behavior of the expected response and the circuit which is
manufactured .

Now if we do structural testing how many test patterns will be needed . Now to test one
of the gates, suppose we want to test G1 G1 gate. This is a NAND gate so this has got 4
inputs . Now if we want to just test this NAND gate how many test vectors will be
required. In this case since the input number of inputs is 4 for the NAND gate then we
will need one and only 2 to power 4 or 16 input combinations . And since there are 5
NAND gates it will require 16 into 5 that is 80 test test test patterns to test individual
these components .

So we have come down from 65000 or around 65000 to 80. There is a drastic reduction
in the number of test patterns required . So in that sense structural testing is very
efficient. It requires very less number of test patterns but there are certain assumptions
involved here and what are those assumptions. So if we are carrying out structural testing
we need to observe the output pins of all the components . So if we want to test whether
G1 is functioning correctly or it is giving this the NAND gate G1 is correct or has been
manufactured correctly then we need to observe the value of this output . So when we
apply a test pattern X1 at X1, X2, X3, X4 as say 111 we expect that this G1 gate will
produce an output of 0 since it is a NAND .

But do we have a way to see this signal or observe this signal? The answer is no,
because when we apply a test pattern to our circuit we have access to only the input ports
and the output ports . So only these points are accessible for the test for the test
equipment and at this point the internal nodes or internal nets of the design or the or a
circuit are not accessible to the automatic test equipment and therefore we cannot observe
these nets N1, N2, N3 and N4 . So assuming this may not be correct, assuming that we
can observe the output pins of all the internal components of our circuit may not be
correct . Now we can. The other thing that we have assumed in structural testing is that
we can write any value at the input pins of all the components. For example if we
suppose that we are trying to test this G5 then we are saying that we are free and we can
easily apply a test pattern that is 1111 at the inputs of the gate G5 .

But the nets N1, N2, N3, N4 are internal nets that are not directly accessible to the AT



test equipment and therefore we can make the assumption that we can write any value at
the internal nodes of the circuit that is not correct . And the third assumption that we
have made in a structural testing is that there can be problems in the integration of the
components which we are not considering. For example this net was broken at the G1
gate, this component and G2, G3, G4, G5 all these components may be working
perfectly fine. But the interconnection between them may not be working properly and
that also we need to test during manufacturing tests. So these are some of the
assumptions that we made while deriving that only 16 input 16 patterns are required for
structural tests.

So though the thought function though the structural testing requires very less time or
number or significantly less number of test patterns compared to functional testing but it
makes assumptions about accessing internal nets and also the integration of the
components . So now DFT techniques or the or the design task that we carried out which
are targeted for testing those make these tasks make changes in our design those tasks
make changes in our design such that the above these three assumptions becomes more
or less valid for our circuit . So the goal of DFT techniques is to make structural testing
more effective by ensuring that these assumptions hold . We can easily control the
internal signals, easily observe the internal signals and also verify the interconnections
between the components . So now how these DFT techniques ensure that these
assumptions are valid we will see in today's lecture and in the subsequent lectures.

Now the manufacturing test is done with the help of fault models . So we design test
methods or test patterns or extract test patterns by assuming a fault model for our circuit.
Now what are these fault models? So fault models represent a defect using a logical or
electrical model . So let us take an example: suppose we had an AND gate, we had two
inputs A and B and it was producing an output set. Now for this AND gate we made a
layout and with this A line was running B line was running and also a ground line was
running .

Now because of the random variation in the processes some conducting test particles
came and it shorted the line B and ground . So this is a defect. This is an example of a
defect. Now our circuit has got a defect and it is a fatal defect. It may be a fatal defect
because it is shorting the line B and the ground . So this defect can be represented using
a logical or electrical model that is what the fault model is. So how can we represent
this defect using a logical or electrical model? We can represent it using say making this
ground B B line stuck to the ground line .

So we say that B is taking a constant value of 0 because it is shorted to ground. So this
is a representation of a defect and this is known as a fault. We have said that we are



representing the defect. Defect is a physical phenomenon . This is a physical
phenomenon which is observed on the on the on the on the layout or on the on the die
and we are representing that defect you you in our in a circuit model using a fault model
.

So this is what a fault model is. Now why do we use a fault model? What is the
purpose of using the fault model? So fault models allow us to analyze the impact of
defects using logic or circuit analysis techniques. For example if we said that we we we
have modeled the defect of the short circuiting line B and ground using this circuit using
this fault then we can analyze the impact of this fault by saying that this B line is equal to
0 and since this is connected to an AND gate the output Z will also become 0 and then
this fault will propagate and so on. So we can apply the circuit analysis techniques once
we abstract out the impact of defects to our circuit. We represent the defect in the circuit
and then use the circuit analysis techniques to carry out further design tasks .

So it allows deriving test patterns algorithmically for detecting a given fault . Now once
we have got the defect in the form of a circuit now we can use it in our design task for
example extracting the test pattern . Now suppose this B B line was grounded B was
grounded or B was stuck to 0 . Now if we apply a test pattern to say A is equal to 1 and
B is equal to 1 for a good circuit we expect that Z is equal to 1 . But if this line B was
stuck to 0 Z will produce a value of or the value that will be produced at Z will be 0 .

So we can say that A is equal to 1 B and is equal to 1 is a test pattern . Now once we
model the defect in a circuit we can apply various algorithms to extract test patterns and
how to extract these test patterns and what algorithm will be seen in the subsequent
lectures. And so we can also use the fault model to assess the quality of testing meaning
that if we say that defect is causing this this this fault was and the manifestation of defect
is some form of logical logical defect . Now whether our test patterns are catching those
conditions or circuit conditions or not we can measure it using circuit analysis
techniques. And based on that we can say whether our quality of testing is good or not.

So the fault model allows us to have a quantitative quantitative assessment of testing or
effectiveness of testing . If we are able to cover most of the faults in our design you in
our testing we say that the testing is good. If many or many faults are not detected
meaning many possible faults for a given fault model if we are not able to catch them
during testing then we say that our testing method is not effective . And these kinds of
quantitative quantitative assessments we can make after we have modeled the defect as a
fault. So the fault model basically transforms the problem of defect detection to the
problem of fault detection .



Now there are various kinds of fault models that we use in an in a for in an integrated
circuit. Now let us look into one of the most popular fault models and that is known as
the stuck at fault model. Now what is stuck at the fault model? Stuck at fault model
assumes that defect causes the signal to be permanently stuck at a constant logic . For it
transforms the defect to a logical fault model and there are two types of faults. The first
one is known as stuck at logic 0 or stuck at 0 and we can use the short form S a 0 to say
that a given signal is stuck at logic 0 .

And similarly there is another type of stuck at fault which is known as stuck at logic 1
fault and it is in this case the given signal is a stuck at 1 and we abbreviate it as S a 1
fault . So now let us take an example, suppose we are given this NAND gate it has got
four inputs a b c d . Now if there is a stuck at fault or stuck at 0 fault at the pin a if the
pin a is say stuck at it is shorted to the ground line . Then we model it as a stuck at 0
fault or we say that a is stuck at 0 when we write stuck at 0. Similarly if the a line was
shorted with V d d or power supply line in that case we will say that a is stuck at 1 and
and in short form we say that S a 1 is there at the line a .

Now there is another fault model which is known as the single stuck at fault model
which is very popular. Now what is single stuck at fault model? In the single stuck at
fault model we assume that there is only one fault active at a time in our circuit . And
why do we use the single stuck at fault model? So we use it because it reduces the
complexity of test pattern generation significantly . Now given our circuit, say our circuit
which consists of say millions of gates and millions of nets is it fair to assume that only
one fault is active at a time . So on the surface it seems that it is very unfair because if
there are say millions of nets in our design and the fabrication process is a kind of or the
or getting defects during fabrication is a random event then we can have multiple faults
simultaneously on our chip .

So the single assumption that only a single fault is active at a time in our circuit may not
be may not be correct . But still we use a single stuck at fault model why? So the reason
is that the test patterns or the set of test patterns that we derive using the assumption of
single stuck at fault model those are able to capture 99 or those are able to cover 99
percent of the multiple stuck at fault in our circuit if there are multiple outputs in our
circuit and the logic structure is fairly complex which is there in our industrial designs in
those cases in the test patterns that are derived using single stuck at fault model
assumption those are able to cover 99 percent of the multiple stuck at fault also.
Therefore the quality of the testing does not suffer by making this assumption and
therefore the single stuck at fault model is widely used in the industry because it reduces
the complexity of test pattern generation without sacrificing the quality of the test. Now
let us understand where faults occur in our circuit and what are fault sites? So the point



where a fault can exist or we assume it to exist is known as the fault site. Now how do
we emulate a stuck fault in a circuit? So when we have a circuit and we want to emulate
it, suppose we have an inverter driving another inverter .

Now if we say that the input A sorry input of this inverter I2 let us name it as 1 and we
say that this one was stuck at say 0. Now when we want to do a circuit simulation or
fault simulation for the case when there is a fault occurring in our circuit how do we
emulate those conditions . So we emulate it by disconnecting the corresponding source
meaning that we disconnect the line between I1 and I2 we disconnect it and tie it to the
constant logic . We say that this input is being held to constant logic 0 . In this case it
was stuck at 0 therefore we tied it to 0 if it was stuck at 1 we will tie it to 1 .

Now for a given net how many fault sites can be there . Now if the net is a fan out free
net meaning that for this net the number of pins in the fan out is 1 . So if the fan out is 1
or it is of this kind of nets are known as fan out free nets in that case the number of fault
sites is 1 . If this one is stuck at 0 if the input is stuck at 0 we or say this z is or the z pin
is stuck at 0 both are considered as the same . And therefore the number of fans out the
fault site for a fan out free net will be 1.

But what about the nets which have fan out more than 1 for example this net N2 . In
this case how many fault sites will be there . Now in this case suppose there is a fault at
this point at the output of G1 suppose this one was stuck to 1 . If this one was stuck to 1
then it means that all the driven pins all the driven pins will get a value of 1 . So in this
case this stuck at 1 at the pin z of G1 will lead to fault in all the driven pins all in the fan
out.

However suppose there is a fault at this pin
only the input pin that is the input pin A of
G2 suppose this was much stuck to 1 .
Then in this case even though the G2 is
stuck to 1 the other gates for example G3
and G4 those may be working fine . So we
have to differentiate whether this one the
input of G2 is stuck to 1 or input of G3 is

stuck to 1 or input of G4 is stuck to 1 . So there can be 3 there can be 4 different ways in
which fault can happen . It can happen at this point it can happen at this point at this
point 3 in the fan out plus it can have happened in the output of G1 .

So if there are n fan outs so in this case there are 3 fans out there then how many fault



sites will be there it will be n plus 1 . In this case there were 4
fault sites 1 fault site second third and 4 . So depending on how
many fan outs are there for a given net the number of fault sites
will be either 1 or n plus 1 . Now let us take an example of a
circuit and then understand where the faults can occur and
what kind of how many possible faults there are under the
assumption of single stuck at fault model ok. Now consider
this circuit, suppose this circuit was given to us and we are
asked the question that how many singles stuck at fault can be
possible in the circuit .

Now to find out the number of possible faults in the circuit we need to first find out
how many fault sites are there for the circuit . So in this case of course there will be the
fault sites that are the input port these are the fault sites . And then if we look into the
net A this one there is only one fault site because it has got a fan out of 1 . And for the
net which is connected to B how many fault sites are there one at this input and another
at this .

And of course the fault can come B also be at B. Now for C how many fault sites are
there only one because there is a fan out of 1 . Now for F 4 there is only one fault site,
for F 5 there is one fault site and for Z there is one fault site . So how many total fault
sites are there one is A B F 1 F 2 F 3 1 2 3 4 5 6 7 8 9 . Now on each fault site we can
have two types of fault stuck at 0 and stuck at 1. So total how many faults are possible 9
into 2 that is 18 faults are possible 18 single stuck at faults are possible for this circuit.

Now let us look at how we can detect a fault in our circuit. So we detect faults in our
circuit using test vectors. Now what are test vectors? So test vectors are any input
pattern or a sequence of input patterns that produces a different response for a faulty
circuit and a fault free circuit. For example let us assume that this is a certain argument
circuit and these are the inputs . So we can apply a pattern a sequence of 0s and 1s at the
input such that the output that this circuit produces for a faulty circuit and a fault free
circuit are different meaning that say for faulty circuit it is producing 0 and for a fault
free circuit if it is producing 1 then the input pattern that we have applied to our circuit
that is known as the test vector or test pattern .

Now for a given circuit of an element for example say we have a NAND gate if we
want to exhaustively test the functionality of this NAND gate will require 2 to the power
n number of input combinations where n is the number of inputs. So in this case since
there are 4 inputs it will require 2 to the power 4 or 16 input combinations . But can we
derive a set of test vectors which is much less than 16 and are able to capture all the



defects in our or faults in our circuit. So the answer is yes and for that we take help of the
fault models. So what fault models or for example the single circuit fault model does is
that it makes the number of faults that need to be detected in our circuit as linear in the
number of circuit elements .

So since the number of faults that we need to detect in our circuit becomes linear, the
number of test patterns that will be required to test our circuit also reduces drastically .
So let us take an example and understand how the assumption of a single circuit fault
model helps in reducing the number of test vectors. So let us take a case in which we
have say 4 input NAND gates and we want to assume that a single circuit fault model is
valid for this case. So since there are 4 input pins and 1 output pins and each of them can
have a stuck at 0 and stuck at 1 fault. So the number of faults that will be there that
needs to be detected for this circuit is 5 into 2 that is 10 faults .

So that is there are 5 pins in this component and each can have 2 types of faults stuck at
0 and stuck at 1 will have 2 into 5 that is 10 numbers of stuck at fault that need to be
detected. Now let us derive the test patterns for detecting all this 10 10 10 stuck at fault.
So first let us see that if if our circuit is fault free and this is a NAND NAND NAND
gate then since there are 4 inputs we have 2 to the power 4 or 16 input combinations and
for the for for the for the case when all the inputs are 1 we have a value 0 and in other
cases we have the output value as 1 . Now let us assume that in our circuit a fault at 0
fault occurs at this point at this point this is stuck at 0 this is grounded.

So A becomes 0 now if A becomes 0 then what will be the value of Z. So in that case
all input combinations will have the output as 1 and then from this truth table we can
derive what is the test pattern. So remember that or what is the test vector. So remember
that a test vector is the input combination that produces different output for a faulty
circuit and a fault free circuit. So we see that only for the test pattern 1 1 1 1 1 sorry 1 1
1 1 we have the the value produced at the output Z is 0 for a fault free circuit and 1 for a
faulty circuit and therefore 1 1 1 1 is a is a test vector to detect a stuck at 0 fault at the
pin A . Similarly the to detect stuck at 0 fault at pin B C and D we can use the same same
same test pattern that is 1 1 1 1 .

Now for the stuck at fault stuck at 0 for stuck at 0 at the output 0 sorry output Z what
will be the test pattern in this case for any input combination other than 1 1 1 1 the
output will for a faulty circuit is 0 and the fault output for a fault free circuit is 1 . So all
these are valid test patterns except this one . Similarly we can derive the test pattern for
the case when A is stuck to 1 B is stuck to 1 C is stuck to 1 D is stuck to 1 and Z is stuck
to 1 . So these are the these are the patterns for example if we take A stuck to 1 if A is
stuck to 1 then the for the test vector 0 0 1 1 1 1 the output produced by a good circuit



will be 1 the output produced by the good circuit will be 1, but output produced by the
bad circuit or faulty circuit will be 0 because A is held to 1 . So a valid test pattern to
detect a stuck at fault at stuck at 1 fault at A is 0 1 1 1 .

So we see that the number of tests or the test vectors that can test all the ones stuck at
fault in our circuit is 1 1 1 1 0 1 1 1 1 0 1 1 and 1 0 1 1 0 1 and 1 1 1 0 . So these 5 test
vectors can cover all the stuck at fault in our circuit . So instead of 2 to the power 4 that
is 16 combinations input combinations we need to apply only 5 combinations . So since
there were 5 sorry 4 input pins we required 5 test vectors to detect all the ones stuck at
fault. So in general if there are say n inputs for a NAND gate then will require n plus 1
number of test vectors to cover all the singles stuck at faults in the NAND gate .

Now this is the story about 1 component 1 . Now we want to test this NAND gate when
it is lying inside our circuit . Now when this NAND gate is sitting inside our circuit we
need to apply the test pattern to it . Now if this NAND gate was directly connected to
the input port the AT equipment AT could have directly applied the test patterns at the
input pins . For example, suppose the test vector we needed to apply was 1 1 1 1 and
this NAND gate was directly connected to the input port then the AT could have directly
applied 1 1 1 1 to this NAND gate . And testing would have been easy or the
application of test vectors would have been easy .

But as we move this NAND gate deeper into our logic for example, here we have shown
that there is a NAND gate and in its fan there is a complicated logic structure, a Boolean
function which is implemented using a logic gate. There can be several levels of logic
gates in its fan . Now in this case if we want to apply say 1 1 1 1 test vectors to at the
input pins we need to find out what would be the combination of values such that we get
the at the combination the correct value at the input port input pins of this NAND gate .
So, as the gate moves deeper inside our circuit the application of that of the required test
vector on that component becomes more and more difficult. Because intervening logic
structure will not be a may not allow us to pass some test pattern directly to the input of
the logic input to the component we want to test .



So if the NAND gate was lying too deep in a circuit it is difficult to apply the required
test pattern at the input and this the this ability to set any desired value 0 or 1 on the
internal signals of a circuit by applying an appropriate test vector to the primary input
this this is known as the controllability . So the the the ability that we apply that we can
apply a test vector easily at the input pins of our component or at any given internal
signal in our circuit the ability to apply the arbitrarily 0 or 1 at a given internal signal in
our circuit from the input ports that ability of a circuit is known as controllability. For
example, if this NAND gate was sitting very close to the input port the controllability
would have been higher as it goes deeper into the logic logic structure the controllability
may become inferior . Similarly the output of the NAND gate will be difficult to observe
at any primary output if the NAND gate is lying too deep in the logic structure. For
example, we want to see once we apply the test pattern say 1 1 1 1 the the correct the the
correct or fault free NAND gate will produce a 0 , but if this was a faulty NAND gate it
might be producing a 1 .

Now we want to observe this one on some of the output ports because that is only
accessible to the automatic test equipment . So if this component was lying much deeper
in our logic then observing this one or the faulty behavior at the output would have been
more difficult. So this ability to examine any internal signal by propagating its value to a
primary output by applying a test pattern at the input is known as observability . For
example, if this NAND gate was sitting very close to the output port its observability
would have been higher, but if it is away from the output port its observability is inferior.



Now this problem of observability and controllability becomes more complicated for
sequential search .

Now if there is a combined sequential circuit we can model it as an FSM . So we can
say that these are the state elements, these flip flops are the state elements and these are
driving the combination and the combinational logic cone is being driven by these state



elements . And now when we want to apply test patterns to the test pattern to our
combinational circuit elements or components we must produce the correct set of values
at the output of the state elements . So the and to and the difficulty in applying correct
values at the at the at the output of the of the state elements that is the problem of
controllability. Now setting a particular value at any pin in a sequential circuit is more
difficult than a combinational circuit because several cycles may be required to write a
particular value . And a state traversal can be required and the number of and the and
finding such a test sequence is time consuming by sequential ATPG2.

So let me explain what this means . So it supposed we wanted to apply a test pattern 1 1
1 1 at this component and gate . Now these inputs are being driven by the flip flops;
these are driven by the flip flops or state elements . Now to get these values at the input
of the NAND gate we must have 1 1 1 1 at the output of these flip flops . Now these flip
flops can be part of an FSM and getting this 1 1 1 1 at the output or the state 1 1 1 1 at
the FSM may not be easy; it may require many cycles to reach that state. For example,
suppose these flip flops were part of a counter and the counter starts from 0 0 0 0 .

So to reach the state 1 1 1 1 it will require 2 to the power 4 or in the range of 16 cycles
to reach that state . So that is why we say that if we want to get a value at the output of
the state elements we will require state traversal in this case state traversal from 0 0 0
then to 0 0 0 1 and so on up to the state 1 1 1 1 . And doing state traversal can be
exponential in the number of state elements and therefore reaching the correct state for
an FSM that will deliver the required test pattern at the component it may require an
exponential number of clock cycles it will increase the test time and the cost of testing.
Additionally the finding that tests the correct sequence of this state traversal will give us
this test pattern at the combinational circuit element that will also require high
computational or require more difficult or challenging computation.

So it will make finding the testing test pattern also more difficult . And a similar kind of
problem occurs when we try to observe the problem of fault or the effect of the fault in a
sequential circuit to observe the value say 0 or 1 for from for a combinational circuit at
the output at an output port we might require again a state traversal and the number of
state traversal will be maybe exponential in the number of state elements . So the the
controllability and observability of a circuit is very very difficult for or more difficult for
a sequential circuit. And therefore we need to make some circuit modifications or we
make some changes in our design such that the controllability and observability in a
sequential circuit that improves and how we can and what changes we can make and
how and what changes needs to be made in our design will be looking that in the
subsequent lectures. Now if you want to go deeper into the topics that we have discussed
in this lecture you can refer to these books. Now to summarize in this lecture what we



have done is that we have covered or we have looked into some basic concepts related to
DFT.

So we looked into what is structural testing or what is a structural testing paradigm and
how it differs from functional testing. We looked into fault models. We looked into what
are test patterns and we also looked into what is the problem of controllability and
observability in a sequential circuit. In the next lecture we will be looking into a design
methodology which is known as scan design methodology which basically improves the
controllability and observability of the signals in a sequential circuit. Thank you very
much.


