
VLSI Design Flow: RTL to GDS
Dr. Sneh Saurabh

Department of Electronics and Communication Engineering
IIIT-Delhi

Lecture 24
Formal Verification-III

Hello everybody, welcome to the course VLSI Design Flow RTL to GDS. This is the
19th lecture. In this lecture, we will be continuing with formal verification. In the earlier
lectures, we had looked into two fundamental techniques that allow us to solve formal
verification problems that are encountered in VLSI. And those techniques were related to
representation of a Boolean function using BDDs and solving the satisfiability problem
efficiently. Now, having looked at the fundamental techniques, now let us understand that
what are the formal verification tasks that are performed in VLSI.

So typically, there are two fundamental formal verification tasks that are performed in
VLSI design flow and these tasks are model checking and equivalence checking. Now,
just to recap what is model checking? So, model checking basically verifies that for a
given model or design whether the specification or a given set of properties are satisfied.
And what is equivalence checking? So, the equivalence checking verifies that two
representations of the same design exhibit exactly the same behavior or not. So, these are
typically the two most popular most widely used formal verification task that are
performed in VLSI design flow.

So, in this lecture, we will be looking at model checking and in the next lecture, we will
be looking at equivalence checking. So, let us first start with the framework of model
checking. So, in model checking what we do is that the inputs that we give to the tool is
the given design either in the form of RTL or netlist and the tool internally models this
design as an FSM or finite state machine. Additionally, we give a set of properties. So,
the first input is the design, which is modeled as FSM and the second input is the set of
properties that we want to verify, the property which should be valid or should hold for
our given design.



So, the properties are not inferred by the tool. We need to provide the properties as an
input to the model checking tool and given these two inputs what the model checker does
is that it verifies that whether the given property let us say there is a property P, then
whether this property P hold true in the model M or our design M. Now, if the property
holds, then the proof of the correctness of properties established and if the property does
not hold, then the model checking tool will give us an counter example and using this
counter example, then we can debug our design and see that why the property which we
were thinking should be valid for our design why it is not being valid. Now, what is the
challenge in this task? So, the challenge in this task is that the model checker needs to
verify that the given property is valid as the FSM or our design evolves through its
various states. So, if given a design, the design is modeled as an FSM.

Now, FSM is finite state machines. There are lots of states in them and as we give input,
then based on the input and the current state, the finite state machine goes to the next
states and the finite state machine moves through various states during its execution. Now,
the problem is that the model checking tool needs to verify that this property P should
hold for that FSM for all the states. Now, given that our design contain n state elements
or flip flops, the number of states that can be very huge it can be 2n. It is exponential in
the number of state elements.

And therefore, the model checking tool needs to verify that given a starting state, the
property holds not only for the current state, but all the states that the finite state machine
will go through and the number of states that are possible is 2n. For example, you can
consider say there are only 100 flip flops in our circuit, then the number of states that are
possible will be 2100 and by going through each of the transition through each of the state,



it is simply impossible to verify that our given property is valid for our design or an FSM.
So, this problem is known as state explosion problem meaning that there are lots of states
possible for our circuit and we have to look for the validity of this property throughout
the state space. Now, first let us look at how we give properties to the model checking
tool. Now, to specify properties to the model checking tool, we need to specify them in
what is known as temporal logic.

Why do we want to specify property in terms of temporal logic? Because system
properties needs time related specification that is why it is tempora,l in addition to logic
related expression for example, AND, OR, and Boolean expressions and those kind of
things. So, we need both kind of specific definitions to be allowed to be existing in our
properties that we want to specify. So, let us see a few examples then it will become more
clear. So, a few examples of temporal properties are ‘whenever a correct password is
entered the door opens eventually’. So, whenever and eventually these are a kind of time
related specification in this property.

Similarly, let us take a look at another property ‘for traffic lights at a given post one of
the red, yellow or green light should be always on’. Now, one of the red, yellow or green
light it is a kind of Boolean logic. So, it is a logic kind of thing, this expression kind of
thing is Boolean logic expression and the always is a kind of a time related meaning that
is this property should hold always in time. So, another property is ‘whenever a request is
made by multiple requester it is never granted to more than one requester simultaneously’.
So, whenever and never these are kind of time related definition or specification in the
property.

Now, so the ordering of events in these properties are implicit. For example, ‘whenever’,
and then, ‘eventually’. So, eventually follows whenever. So, we are not saying that at this
time, this happens; this time, this happens, but it is the ordering of event is implicit in
these definitions eventually, never, always, whenever, etc. Now, how do we model these
kind of properties or how do we give these properties to the model checking tool.

We typically use System Verilog Assertion or SVAs to model the properties and give it
to the tool. Now, what is System Verilog Assertion? So, System Verilog Assertion is a
part of IEEE SystemVerilog language. So, we in the earlier part of this course we had
looked into Verilog. Now, the System Verilog we had seen that it is a superset of Verilog
and the System Verilog assertion, SVA is a part of System Verilog and we can specify
temporal logic using the constructs of System Verilog language or System Verilog
assertion constructs. So, there are constructs for example, there is a keyword assert.

So, using the keyword assert we can specify property in our RTL. So, in our RTL at



various points, we can put assert and within this some properties and based on its
construct, we write some specification for what the assertion should be or what the
property should be. So, we embed these assertions or properties in the RTL itself. Now,
as a result what happens? So, this assertions are checked of course, by the model checker,
it will also be checked during simulation meaning that whenever we have made our
design and inside this design we have written some assertion and we have also written a
test bench which runs on this or provides input stimulus to this design during our
simulation based verification. Now, during simulation if any of these assertions or
properties fail then the simulator will say that this assertion got failed and we can
understand that the property was violated in our design for this particular test bench.

So, when we embed System Verilog assertion then those assertions are checked during
simulation, but there is a catch. The catch is that here the test bench needs to provide the
stimulus and the assertion will fail only when we have a stimulus which is actually failing
that assertion and as we have seen we cannot write a test bench or a set of stimulus which
covers our design exhaustively. So, it is likely that this assertion can fail and based on
that we can understand that this property has violated, but we cannot totally rely on this.
In contrast what model checker will do? Now model checker will also take these
properties and will do a verification of these properties without applying the test stimulus
and that is why it is a formal verification. So, in this lecture we will understand how
formal verification of properties is done by the tool.

So, in that sense model checker is more complete in verifying our properties. Now while
specifying the properties, we can also specify some assumptions and constraints which
will help the model checker to perform the property checking more efficiently. Now there
are keywords in System Verilog assertion: ‘assume’ and ‘restrict’ and using these
keywords we can give information to that model checker that what assumptions can be
made by the tool and these assumptions are treated then as axioms by the tool and based
on that property verification is done or there are constraints which exist for the input in
that case the space where the model checker needs to look into that gets restricted and as
such the property checking can become easier. So, wherever possible if there are
assumptions in our design, if there are constraints in our design, we should add them in
our design because it will help the model checker to efficiently perform model checking.
Now what is the technique of doing model checking like how the tool internally does the
model checking let us understand that and let us understand why it is a formal method of
of testing or checking our design, verifying our design.

So, the primary difficulty in model checking is because of state space explosion that we
just saw. So, earlier what researchers or VLSI designers tried was, we enlisted various
states and and using graph traversal, given a starting state, various states were traversed



and then the properties were verified based on if a state is reached where this property is
not valid and so on. So, this was the earlier approach, of course this approach of
enumerating states and representing in graph and then verifying this does not work
meaning that it was not scalable to the level that it could be useful for VLSI design
application. But in early 1990s what happened is that there was a breakthrough. So, the
the breakthrough came when we started solving this property checking method using a
technique which is known as symbolic state space exploration.

So, earlier this technique was using BDDs and later these techniques were further
improved by using the SAT based techniques. So, we will be looking at how BDDs can
be used to traverse the state and verify the properties. Now, BDD based model checking
uses characteristics function to represent states. So, let us understand what is a
characteristics function. Now, consider an FSM and it has got a finite set of states and let
us represent the set of states as Q.

So, the Q is the set of states for a finite state machine and consider a subset of states.
Suppose there were say 1000 states out of that we took say 20 states. Now, these 20 states,
the subset of states out of all states is represented by A. So, now, what we can do is that
we can represent this A by a Boolean function f and how do we represent this set A. We
represent it using Boolean function f such that if any state x which is an element of Q, if
it is a member of the set A then f(x) should take a value of 1. So, if we define a function f
which is known as the characteristics function for the subset of states A and we define
such that f(x)=1 if and only if x is an element of A meaning that if this is the set Q, it
represent all the states, we took a subset of state, A.

Now, for the states existing in A, f(x) will be 1 and for all states which do not belong to
A, their f(x) will be 0. So, this is the definition of characteristics function. So, let us take
an example and see how we can formulate or write a Boolean function for characteristics
function. Now, consider an FSM of 5 states and let us call these 5 states as s0, s1, s2, s3,
and s4. Now, let us for example, let us first represent these set of states using 3 bits since
there are 5 states will need at least 3 bits to represent these states.

Let us call these 3 bits as x2, x1, and x0. The bits that are used to represent states those
are known as state bits. So, in this case there are 3 state bits and we denote this 3 state
bits as x2,x1,x0. Now, we will do encoding of these 5 states using these 3 bits, there can
be multiple ways to do the encoding. We take one example just for the sake of illustration.
Let us say that we have encoded s1 to s4 as 000 for s0, 001 for s1, 010 for s2, 011 for s3,
and 100 for s4.

So, this is how we have encoded the given set of states. Now, in this representation, we



can represent the subset of states A. Let us consider a subset of states, let us consider that
there is a subset A, which contains only 3 states out of 5 states s0, s2, and s4. Then how
can we represent this in terms of characteristics function of A? We just take the min term
corresponding to each of the state. s0 for that we can take if the value is 0, bit is 0, we
take it as in the complemented form and if it is 1, then we take uncomplemented form.

So, for s0, all are 0. So, we take x2’x1’x0’. So, this is the min term corresponding to this
state. Similarly the min term corresponding to this. Now, similarly min term
corresponding to s4.

So, s4 is this. So, here we have taken as uncomplemented because this is 1 and then 00
these are complemented. So, we take x2x1’x0’. So, this is how we represent the subset of
states using the characteristics function. Now, here this is the simple representation of the
characteristics function, it is in terms of min terms and we have seen that in the earlier
lectures that min term representation of the function is similar to a truth table and the size
requirement is exponential meaning that it is not compact representation. But for any
Boolean function, we can represent that Boolean function in terms of BDDs also and
what we have seen in earlier lecture is that BDD is more compact and also canonical
representation of a Boolean function.

So, we can represent the characteristics function of even very large set, in which there
are say lots of elements maybe 2n, in that case also, we can represent all of the states
using very compact BDDs. So, we can represent a large set using its characteristics
function with the help of compact BDDs. So, this is a very important tool. So, the number
of states can be very large, but its representation in terms of Boolean function can be very
very small and that we can represent for example, if we take the representation in terms
of BDDs. Now we can also compute the transition from a set of states to another set of
states very efficiently using BDDs.

So, now how can we do that? So, we need to use what is known as a transition relation.
So, consider an FSM with set of states Q. Let us take an FSM which has got set of states
which we represent as Q and let us denote the set of inputs as I. Then for this FSM, there
will be a next state function. Let us represent it using delta (δ(x,i).



So, this delta, δ(x,i) is a function which takes the current state x and the current input i
and it gives us the next state. Now we can represent this FSM transition also in terms of
transition relation and how can we do? So, the transition of the states in an FSM can be
defined using a transition relation T(x,i,x’) which takes input as the current state, input
and the next state. Such that if the transition is there, this transition exists in the FSM for
a given x, i and the next state then the value of that transition relation is 1 and if does not,
then its value is 0. So, T(x,i,x’)=1, that is,transition relation takes a value 1 if and only if
there is a transition in the next state function from the current state x to the current input i
to the next state x’.

So, let us take an example then it will become more clear. Suppose this is our given FSM.
So, this FSM has got two states sA and sB we represent it as 0 and 1 and suppose there
are two inputs A and B, we denote A as 0 and B as 1. Now for the sake of clarity we have
not shown the output function, we are not showing any output, we are just showing the
transition, given in current state and the input, how the next state is reached. Now in this
FSM there are four transition 1, 2, 3, 4 represented by the arrows.

So, if we draw the transition relation for these four transitions, will have 1 and for all
other transitions, the transition relation will have a value 0. Now this is the transition
relation now what we said that transition relation takes input as the current state. So, this
is the current state, this is the current input, which can take a value 0 and 1, current state
also can take a value 0 or 1 in this case because these states are represented by only one
bit. So, this first state sA is represented as 0 and sB as 1 and x’ is the next state. Now we
can see in this state diagram that if the current state is 0 and the current input is 0 that is
A, the next state is the same state sA which is 0 and so this transition relation exists in the



FSM therefore it takes a value 1.

Similarly if the current state is sA represented by 0 and the current input is 1 meaning
that we have applied B then it goes to sB or the next state is 1 and therefore this row has
got the value of T as 1. Similarly for the other transition, this transition and we have this
this entry and this entry. Now the other zeros are for the transition that do not exist in the
table in the FSM. For example, from the state 0 and input 0, it never goes to next state B
and therefore this entry is 0 and this is how we build the transition relation for a given
FSM. Now we can represent a transition relation also very compactly using BDD.

So this is what we have shown is a truth table of the transition relation. Now for this
truth table, we can always represent this in terms of BDDs and it can be represented
many a times compactly and subsequently we use the transition relation in BDD based
model checking. So once we have the transition relation, then we use the transition
relation which captures the transition of the FSMs for the subsequent processing in model
checking. How that is used we will just see. So the key or the crux of BDD based model
checking is the computation of image and preimage.

So let us understand what is image and what is a preimage. Now image of a given set of
state S is the set of state S’ that can be reached in one step from S. So suppose this were
the set of states S. Now from this state, this is not one state, this is a set of state, there are
multiple states here. Now from this state in one transition meaning that we go from one
node to the other node in the graph, in the FSM representation, there is only one edge
from one node to the other that is what we mean from one step from S, we can get to
another set of states. So those set of states are known as the image of this node that these
two sets S and S’ may overlap also meaning that from S then in one step we can again
reach to the same states that we started with. So there can be overlap. So this is the set of
state S that is given and S’ is the image of S meaning that S’ or the set of states which
exist in S’, those can be reached in one step from any state that is an element of S. So
image of a given set of state S, so we are talking about set of states, note that we are not
talking about one state.

Given a set of states in one transition, the set of states that can be reached those are
known as the image of a given set. So we denote the image computation as
S’=image(S,T), where S’ is the image. So which will be the set of states that will be
reached in one step from a given set of state, it will depend of course on the transition
table or transition function. So T comes as an input to the image computation. So given a
transition relation T and the set of states, S’ is what is determined by the image
computation and that S’ is the set of states which can be reached in one step from a given
set of states.



Similarly we can define preimage of a set of state S’, so we are given S’ as the input.
Now from this, for this set of states, what are the set of states S from which we can reach
S’ in one state. So the preimage is the opposite part meaning that we are given a set of
states now from which all state we can come to this set of states, those are preimage of
the given set of states. So the preimage of a set of state S’, so we are given S’, is the set
of state S from which we can reach S’ in one step and we represent this set of state S the
preimage as S=preimage(S’, T) because it again depends on the transition relation. Now
for a given set of states we can compute image and preimage very efficiently using BDD.

So this is the crux or this is the reason why we can use BDD for symbolic state traversal
and property verification. Why? Because the image and preimage can be computed using
BDD for a given state transition relation T very efficiently. So BDD based model
checking relies on this computation. Now let us look at how we can use the image
computation or efficient image computation to compute the set of reachable states, given
a starting set of states and what is meant by reachable set of states. So suppose we are
given a set of states S0, then from a given set of states, the reachable set of states are
those states which can be reached in any number of traversal. So image was related to
only one step, in image computation we were allowed to traverse only one step but when
we are computing reachable set of states, we are removing that constraint.

So reachable set of states are those states which can be reached from a starting set of
states in any number of traversals of the FSM. So let us look into a pseudo code of how
the reachable set of states can be computed from a given starting set of states S0 and the
given transition relation T. So this pseudo code that we will just see will return the
reachable set of states Sreach. So we start initially, we say that all the states that we start
with, S0, those are reachable from itself. So Sreach is initially assigned S0 and we say that
all the new set of states that are being reached is same as S0 initially and we keep a
counter k to see that how the iteration progresses or how the set of states are expanded.



So initially we keep the value of k=0 and then what we do is that from starting set of
states S0, we go on increasing the set of states which are reachable from S0. So this
reachable set of states goes on expanding until no more new set of states are found and
that is why we have a while loop which continues while Snew is non-empty. When it
becomes empty then this loop will terminate and we will get the set of reachable states.
So initially, we increment the counter and then we compute given the new set of states
what are the next set of states that can be reached Sk we can compute it using the image
computation and the transition relations. Now this Sk will also contain some of the
previously reached state.

So from this Sk, we remove the already reached state that will give us the set of new
states that were now discovered in this iteration and we assign it to the set Snew. And then
to understand this process that how the set of states are expanded we can understand this
figure. So we start with S0 those that contains set of states that we are given. And in first
iteration we say that from S0, we compute the image meaning that the set of states which
are reached in one step from this S0 and suppose these are the set of states which are
reached from S0. Then we say that out of these reachable state, we remove already
reached state that was S0 and these are the set of new states, this is Snew.

And then this loop goes on and then in the next iteration from this Snew, using image
computation we again find next set of states which is reached from Snew that is done in
this state. We get next set of states which is found for Snew. Now out of them some of
them will be already reachable so we remove that and then the other that will be left will
be the new set of states. So these were already reached and in the next iteration these are
now Snew. And then what we do is that now we say that now reachable set of state has



become this much.

And then in the next iteration using image computation we will get next new set of states
and so on. Now if we go on expanding the set of reachable states what will finally happen?
Now we are expanding set of states for an FSM. FSM means that the number of states in
this machine is finite and therefore, we cannot continue infinitely. Finally what will
happen is that the set of reachable states will be reaching a point in which no new states
are being discovered and when that happens, we say that the algorithm has reached a
fixed point. And once the algorithm reaches a fixed point then no more new no more new
set of states are being reached and then this Snew will become an empty set and the
algorithm will terminate.

So in this manner from a given set of state S0 and using efficient image computation we
can determine all the reachable states from a given set of states. Now states are
represented compactly as characteristics function using BDDs. So note what we have
done we have not said that from this state let us traverse to the next state and so on. We
are not doing a graph traversal state wise. What we have done is that we are symbolically
traversing set of states and set of states are being represented using characteristics
function and all these operations are being performed on the characteristics function of
sets.

And these characteristics functions can be, though the number of element in this set can
be very huge, the characteristics function will be compact and those can be represented as
BDDs. And also since we are using BDD, comparing set and performing operations or
comparing two functions becomes very easy. Why, because BDD is a canonical
representation if two functions are equal their representation or their pointers will also be
and that is why this state traversal or set of state traversal using symbolic traversal of set
of states using BDD is efficient. Now in this algorithm instead of image if we put
preimage then what will happen? Then what we can say is that we can compute the set of
states from which a given set of states can be reached. Now having understood the
reachability analysis or how the set of reachable states are computed using BDDs let us
understand that how it is employed in model checking.

So, suppose it is required to check whether a state satisfying a Boolean function P is
reachable from a given initial state s0 we are given a initial state s0 and we are asked the
question or a model checker is asked the question that whether a state satisfying a
Boolean function P or set of states that satisfies a Boolean function P is reachable from a
given initial state. So, let both the states and the Boolean function P be represented in
terms of state bits. So, we are saying that P is also a function of state bits x0, x1 and so on
and we are representing the set of states also in terms of these state bits. Now a model



checker considers a set of states SP for which P holds. Now we are given an initial state
S0, this is one state. Now we are asked the question that whether a state is reached in
which P holds.

So, model checker considers a set of states SP for which P holds and then it tries to find
that whether this set of states can be reached. Let us represent the set SP using a
characteristics function, CFSP. So, let us represent this set using a characteristics function
and we are representing as characteristic function SP and for this state, P holds for all
states in this set, the property P holds. Now but what we find that the characteristics
function CFSP is nothing but P, it has to be P. Why that is the case we will see. So, what
we are saying is that the characteristics function of the set of states for which P holds is
nothing but P. Note that we have represented both P and the set of states using the same
state bits.

So, why this is that the characteristics function of the set of state that is CFSP will be
equal to P let us understand that. So, consider state x, for which P holds that means that
P(x)=1.If P holds then for a given state x that means that P(x)=1 by definition of what we
mean by holding true for a given state. Now x if it holds then it should also belong to SP,
this set SP. So, x should be here. Hence CFSP(x) must be equal to 1 for this x.

So, for the given x, this characteristics function must evaluate to 1. So, what this means
is that if P(x)=1, it implies that characteristics function CFSP(x) is also 1, this is one way
implication. Now consider another state y, for which the characteristics function gives us
a value 1. So, CFSP(y) evaluates to 1 therefore, y belongs to SP. For a state y, if
characteristics function gives us a value 1 what it means is that y belongs to the set and
therefore, y belongs to SP and if it belongs to SP then P should also hold for it and
therefore, P(y) must be equal to 1. So, what it means essentially is that CFSP(y)=1 implies
that P(y)=1. Now using these two statements, we can say that these two are equal, CFSP it
must be equal to P.

So, what we have proven now is that the characteristics function of the set of states for
which P holds is nothing but P. So, now we have got the set of states. Or given a property
P, which is represented in terms of state bits, we know that the set of states for which it
holds is nothing but P. Now using preimage computation we can determine that what are
the states from which we can reach the set of states P. So, given the property P, we know
that this is the characteristics function for the set of states for which P holds is nothing
but P and we are given a starting state s0. Now if we ask the question that give me the set
of states from which the P is reachable it will expand this and we get this set.

Now if s0 is within this set then we can say that this property holds and if it is outside



this set we can say that it does not. So, using preimage computation we can determine the
set of states Sreach’. So, this is Sreach’, this big set is the set of all reachable states from
which SP can be reached. Now if Sreach’ includes initial state s0, given property holds and
if Sreach’ does not include the initial state s0, the property does not hold. So, this is what is
basically the mechanism of property checking or model checking using BDDs.

Now what could be the limitations of this method of checking or checking the property.
So, in the worst case the size of BDD can be exponential. We had seen this in the earlier
lectures when we were discussing BDDs we saw that for some function it will always be
exponential for some function it depends on the variable order. So, what it means is that
when we are trying to represent this characteristics function and the transition relation
using BDDs, sometimes it may happen that the size becomes very big and the BDD
explodes and in that case we will not be able to verify our property. So, a BDD based
representation of transition relation can blow up with an increase in the number of state
bits and and if the number of state bits increases or number of variables in the Boolean
function representation that is growing and therefore, the chances of BDD exploding or
becoming out of memory becomes greater as the number of state bits increases.

So, in that case what we can do we can try different variable order. So, in the tool the
model checker internally what it can do? If for this kind of variable order, some problem
is there, the BDD is growing exponentially or it becomes very big then probably reorder
the variable order and probably the problem can be solved. So, that is one way to deal
with this problem. The other way is to give manual intervention. So, when as a designer
we find that our tool is not or the model checker tool is not able to solve or saying that in
case the property is not being verified by a tool, typically the tool will say that the
property P is not verified or it is a case of unsolved problem. So, the tool cannot say
whether the property holds or it is not even able to refute the property. In that case the
tool will report that this property, the tool cannot say anything about or cannot infer
anything about this property and it is an unsolved problem. When that situation arises
then as a designer what we can do? So, we can apply some constraints to our problem. If
we know that some variables cannot take some values and so on, then we can provide
those constraints or if there are some assumptions or similar kind of thing we can provide
some hints to the tool which can help solve the problem.

So, we simplify the problem for the model checker and make it solvable. That is one way
as a work around we can try this by looking. So, we as a designer, we know that some
constraints are there or the tool can make some assumptions about the inputs and so on
we should give that because it helps model checking tool to simplify its internal problem
formulation and as such it may not go out of memory or it may give you the answer in
lesser run time. The other way to do a model checking is SAT based model check. So, it



in some sense avoids the problem of memory blow up of BDDs. So, one of the way in
which SAT based model checking is done is finding the counter example for a given
property.

So, the approach that is used by the model checking tool is to obtain a counter example
of a finite length. Length here means the number of clock cycles from the initial state say
in 10 clock cycle can I get a counter example. So, what we mean by counter example is
that suppose we are giving a property that given a wrong password the door should
remain locked. So, suppose this is the property then what would be a counter example?
The counter example could be that given the password is wrong and the door opens.

So, that is a kind of counter example. So, the tool will try to formulate a Boolean
function Φn, n is the number of clock cycle or the length for which the tool is trying to
check. So, that the model checking tool will formulate a Boolean function Φn using the
given circuit or given FSM and the given property such that the function Φn is satisfiable
if and only if a counter example of length n exists. So, it will first try to formulate a
Boolean function Φn where n is the length or the number of clock cycle. That function
Φn will be true or that will be satisfiable only if there exist a counter example of length n
and by then invoking the SAT solver it can see that whether this function Φn is satisfiable
or not and based on that it can come to a conclusion that if it is satisfiable then we have
found a counter example and that will be reported to a designer and then designer can
understand that why a given property failed. So, this type of model checking is known as
bounded model checking because here in this case, we are allowing the clock cycle to be
bounded by n, it is not more than n, it is less than n. So, therefore, this is a bounded
model checking. It is a simpler problem in that sense than what we solve in using BDD
based model checking.

So, typically we carry out bounded model checking or BMC iteratively by incrementing
n. We start with n=1, 2, 3, 4 and so on. So, we go on doing it. So, it continues until we
have found a counter example say we went from 1 to say 2, 3, 4, 5 and at the fifth clock
cycle we found a counter example. We are done, we got a counter example, now we have
to fix the problem in our design or we have to at least analyze what is there in our design.
Now if we go on increasing n what will happen is that we will reach some stage where
the problem, this Φn function becomes so complicated, the number of variables and
clauses in this function are so many that the SAT solver, even though it is efficient, is not
able to solve it. So, the problem becomes too complicated to be handled by the SAT
solver in that case we cannot do anything, we cannot progress further with increasing the
number of clock cycle.

So, the mechanism of this bounded model checking is to first derive this Φn, we unfold



the behavior of the system one clock cycle at a time. So, we start with 0, then clock cycle
1, then what happens in the clock cycle 2 and so on. So, we unfold the behavior of the
system one cycle at a time using the next state function of the FSM until it reaches the n
clock cycle. So, for one clock cycle, two clock cycle, three and so on up to n, it will
unfold the behavior of the system. And then it will find Φn which is nothing but a logical
conjunction of clauses obtained from three different entities.

First is the initial state from where we are starting, the second is the system behavior
obtained from the next state function. So, this is what we had said, we unfolded the
behavior of the system, from there we will get the system behavior obtained from the
next state function and then the Boolean expression that evaluates to one for a counter
example. So, it will be derived from the given property. So, given the state and the
evolution of states using the next state function, evolved up to n clock cycle and the given
Boolean function, it will formulate Φn and then invoke the SAT solver to see whether it
is satisfiable. If it is satisfiable we have found the counter example otherwise we can say
that till clock cycle n, there does not exist any input combination that will refute this
property P.

Beyond n clock cycle we cannot say anything, but till n clock cycle, we can say that
there is no input sequence which will actually refute this property P. In that sense it is still
a formal verification technique because it is not taking the sequence of inputs from the
designer or we are not giving as input, it is considering all inputs, the complete/ entire
input space, but it is only unfolding up to n clock cycle and therefore, in that sense it is
incomplete. So, the merits of model checking using this SAT technique or bounded
model checking is that it avoids the problem of memory blow up that may happen in the
BDD based model checking. We are not representing transition relation and doing those
kind of image computation and those kind of thing and therefore, memory blow up
problem can be avoided.

So, next state function grows linearly as the BMC traverses the next state in each cycle.
So, if we go from say clock cycle 10 to 11, the number of variables that will increase in
the evolution of states that will grow linearly rather than exponentially and therefore, the
chances of memory blow up is much lesser in bounded model checking. But the problem
for the SAT solver that increases exponentially. If the number of variables is n and if we
increase to n+1, then the solution space where the function can be satisfiable that is
increasing exponentially and therefore, the problem becomes more complicated for SAT
solver and will take more run time. So, it exploits the power of the SAT solver since the
SAT solver has becomes very efficient over last few years. The power of SAT solver is
employed efficiently in bounded model checking. However as we discussed, it lacks
completeness meaning that it gives an answer only up to n clock cycle beyond that we



cannot conclude anything using bounded model checking.

So, where is basically the application of this bounded model checking. So, the
application is in practice to quickly find bugs which we cannot as a designer find easily,
for bug hunting. So, why it will be useful because, see if we say that we have done BMC
up to say 5 clock cycle. Till 5 clock cycle it is actually considering all input space for a
given property. So, if there is a failure in 5 clock cycle we will get a failure. So, as a
designer, we need not give a stimulus to the tool, to the simulator to give an answer for
that. So, a bounded model checking can help a lot in finding bugs which are not easy for
us to comprehend or come up using our intelligence.

So, in that sense BMC is a very good tool for verifying property of our design. So, if you
want to look further into the topics that we discussed, these are some of very good
references. Now, to summarize what we have done in this lecture is that we understood
that the application of formal verification technique in VLSI is in 2 major areas. The first
is model checking or property checking and the second is equivalence checking. So, we
saw the model checking in detail in this lecture and in the next lecture we will be looking
at the equivalence checking in detail. So, thank you very much.


