
VLSI Design Flow: RTL to GDS
Dr. Sneh Saurabh

Department of Electronics and Communication Engineering
IIIT-Delhi

Lecture 21
Formal Verification-I

Hello everybody, welcome to the course VLSI design flow: RTL to GDS. This is the 17th

lecture. In this lecture, we will be looking at formal verification. In the earlier lectures,
we have seen that a given design gets transformed multiple times in a design flow. Now,
as a design gets transformed, we want that the functionality of a design is retained or
preserved. However, a functionality of a design can sometimes be disrupted due to
transformation.

These disruptions can come due to human error or miscommunication between various
teams which are implementing the given design or wrong uses of an EDA tool or a bug in
an EDA tool. Now, whenever such disruption in functionality happens, we want that we
detect those disruptions or deviations in the functionality and fix them as soon as possible.
So, to do these tasks, we take help of formal verification tools that we will be seeing in
today's and subsequent lectures. Additionally, earlier we had seen that to carry out
functional verification, we take help of two types of techniques.

The first one is simulation based technique that we had discussed simulation based
technique in detail in the earlier lectures and the other is using formal methods. So, in
today's lecture and in next three lectures, we will be looking at functional verification
using formal methods. Now, before moving to the formal verification, let us look at a
quotation from Dijkstra and the statement is ‘…program testing can be a very effective
way to show the presence of bugs, but is hopelessly inadequate for showing their absence.



The only effective way to raise the confidence level of a program significantly is to give a
convincing proof of its correctness…’ So, though this statement is made in the context of
softwares and testing a software for bugs, this is very much relevant for hardware also.

So, when we test our hardware using simulation, it is more or less similar to program
testing. We applied test vectors and see the output response and see whether it is
matching as per expectation or not. Now, these techniques are very good at finding bugs
and we rely on them when we write initial RTL and do a functional verification of our
code or of our hardware, but are these techniques establishing a proof that our design is
correct or not. So, the answer is no. So, this is one of the biggest problems of simulation
that it can show the presence of bugs if it exists, but it does not establish if it is not
showing any error from the result of simulation, we cannot say that our hardware is
correct with a confidence level of say 100 percent.

So, the only effective way to raise our confidence is to take a hardware model and prove
its correctness using some mathematical tools and the mathematical tool that we take help
of is the formal verification tool as we will see in today's lecture. Now, before moving to
the formal verification tools let us look into the limitations of simulation based
verification in a little more detail. Now, let us take an example consider that we need to
multiply two 32-bit integers meaning that we have a block which is implementing a
multiplier and the inputs to it are two numbers which are of 32 bit size and this is
producing a result. Now, to verify it using test vector or using simulation we have to
consider 232 combinations of A and similarly 232 combinations of B. So, total we need to
check for 264 combinations of input vectors.

Now, if we take a simulator which is very fast and it takes one test vector to simulate in
just say 1 microsecond then we can estimate how much time it will take to simulate 264

combinations. So, if we can simply multiply 264 *1*10-6 and that will give us a number in
seconds and if we convert it into number of years it will turn out to be around 0.5 million
years. So, evidently this simulation based exhaustive verification is not feasible we
cannot apply so many test vectors in the real world designs and establish correctness by
simulation. So, what do we do in simulation of course, we cannot test a design
exhaustively, we typically apply test vectors.

So, we apply input patterns or test vectors based on our anticipated sources of errors
meaning that when we write our design when we code a Verilog model at that time we
may be thinking that these areas are some corner cases where my design may fail and
may not be producing the correct answer then write test vectors corresponding to that and
then do the simulation. But what it turns out that the error typically do not occur in cases
where we can easily anticipate errors. Actually errors often get in or a often exist in those



part of the design where a designer has not paid attention. And therefore, there simulation
based techniques leaves a lot of room for improvement in terms of the thoroughness of
verification. So, the simulation based verification can never prove the correctness of a
design and therefore, formal verification methodologies which we will see today provides
an feasible alternative.

So, for simulation based methodologies cannot exhaustively test our design. As an
alternative we can use formal verification methodologies. Where we can use? How we
can use? We will see in subsequent lectures. Now, why does formal verification
techniques provide as an alternative and how is it different from simulation in terms of
mechanism let us understand that. Now formal verification as an alternative what does it
do is that it applies mathematical reasoning to establish proof of correctness. It does not
apply test pattern it establishes the correctness of a model by mathematical reasoning,
mathematical deductions and other techniques that we will see in today's lecture.

So, once using mathematical reasoning the formal verification tool is able to establish
the correctness of a design then by correctness it implies that the system behaves
correctly irrespective of the input test vector and implicitly the design will work correctly
for any given test vector. So, if using mathematical tool we are able to establish the
correctness of our design it implies that if we give any input to the tool based on the
mathematical model that was assumed by the tool for establishing the proof, if the input
remains in that domain then for any given input the system will behave correctly. So,
without applying test vectors, the formal verification tool implicitly covers all the test
vectors in our design. Now let us take an example that what it actually means.

Let us take a simple case in which we are given a specification y=(x-4)2. So, this is the
specification. Now in a design what we do is that where we implement this function
y=(x-4)2 as y=x2-8x+16. Apparently these two models are equivalent. We can from our
elementary algebra knowledge, we can understand that these two models are indeed
correct or equivalent. Now how will simulation based technique try to establish the



equivalence of these two models. So, simulation based technique will apply test vectors.

For example, it will say that assume that x can take only integer values then it will apply
say an integer value of 0 it will see that the specification produces the answer as 16 and
the implementation or design also produces an answer 16 and therefore simulation is
possible. Similarly it will apply another test vector say 1 and see that both these two
models are producing the same answer. For 2 also it produces same and minus 1 also it
produces the same answer and for say 104 or any other number it is producing the same
answer and therefore by testing or for a given a few test vectors it is trying to establish
the correctness of the model. Since the number of inputs that are possible in this case is
infinite because x can take any integer value. Therefore the simulation based technique is
a kind of incomplete it is not covering entire test vector.

What if there was a test vector where this model was failing. For these 5 vectors it was
passing, but that for a 6th test vector it was failing. We are never sure using simulation
we can never be sure. Now how will formal verification technique or formal verification
tool attack the same problem of establishing the equivalence between these two models.
It will try to establish the equivalence by mathematical analysis or mathematical
reasoning and using deductions. For example it will start with (x-4)2 and then using the
properties of square or the definition of square it will expand it as (x-4)*(x-4) and then
using the distributive property and commutative property it can come up with these or the
intermediate representation and finally it will come up with a representation which
matches the implementation. Now in this deduction or in this derivation of the
implementation, the tool used only the mathematical models that it knows or what are the
constraint on the input x and what are the definitions of different operators and so on.

And therefore once it is able to establish that given a specification and given a design or
implementation those are matching in terms of representation it can say that these two
things are equivalent, these two, specification and design are equivalent. So, note that the
the formal verification tool did not use any test vector to establish the equivalence of
these two model. It used only mathematical reasoning and deduction to come up with this
answer. And implicitly what it means is that if x takes any integer value these two models
will always be equivalent. So, this is the basic difference between the approach taken by
a simulation based technique and formal verification methods.

Now, let us summarize the main differences between a simulation based technique and
formal verification. So, in terms of test vector simulation based verification requires test
vectors while formal verification technique do not require test vectors. Then in terms of
completeness, simulation based verification is not complete because it cannot cover all
possible test vectors for a realistic designs and in formal verification there can be



completeness. The formal verification tool can for a given check, it can say that ok now
implicitly I have covered all the test vector and therefore, these two models are
equivalent or some property that it is trying to prove gets established. And in terms of
mechanism the simulation based technique use test vector and sees the output response
and compare it with the expected response that is the mechanism of simulation.

And in formal verification a mathematical proof of correctness is established or if these
two models are not equivalent then it will produce a counter example. And in terms of
memory and computational resource requirement usually the simulation based
verification techniques requires computatively low computer resources while formal
verification technique requires more computational resources. Now, we have understood
that what is the basic difference between the mechanism of simulation based verification
and formal verification. Now, an important thing about formal verification is that it is
computationally very much challenged why because establishing a mathematical proof is
not an easy problem. And therefore, a lot of research had gone into formal verification in
last 50 years or so and in early 1990s some breakthrough came and an efficient formal
verification techniques were developed that could be applied for VLSI design and now
we routinely use formal verification techniques in our VLSI design flow.

Now, what are these efficient formal verification techniques? So, the breakthrough in
formal verification came because of two basic formal verification methods. The first one
is a very compact and efficient representation of Boolean function using a model or using
a representation which is known as binary decision diagram. And the second technique
which led to the breakthrough in or it allowed formal verification tools to scale to
realistic designs was the design or was the implementation of very efficient algorithms
that could solve the satisfiability problem or in short it is known as SAT problems. So, to
understand the formal verification methods used in VLSI design flow we need to
understand at this core technologies like what is the mechanism of this formal
verification. To understand this mechanism we need to understand a little more deeper
into these two methods that is BDDs and SAT solver.

So, in today's lecture we will be looking into the binary decision diagrams and how it
helps in formal verification or it helps in efficient formal verification. And in next lecture
we will be looking into the SAT solver or the techniques used to solve the SAT problem
efficiently. And then in subsequent two lectures we will be using or we will be looking
into that how these techniques are actually used inside VLSI design flow that allows
efficient formal verification of our RTL model or VLSI models. Now given a Boolean
function it can be represented in many different ways. In our earlier lectures, we had
looked into some of the representations of Boolean function for example, we looked into
truth table we also looked into sum of min terms representation.



Then we also looked into hyper cube representation of a Boolean function. And we also
looked into factored form representation for multilevel logic and we also looked into we
Boolean logic network and Boolean formulas. Now for these kind of representation, a
very important attribute for these representation, is the compactness of the representation.
So, what do we mean by compactness of a representation? So, compactness of a
representation basically quantifies the growth in the size of the representation with the
increase in the number of Boolean variables. So, if we increase the number of Boolean
variables say from 5 to 10 then how does the size of that representation grow? Does it
grow exponentially, linearly or so on? That is what the compactness of a representation
denote.

Let us take an example for this. Suppose we represent a Boolean function in terms of
truth table. Now we know that given N variables in a Boolean function, it will take 2N

number of rows in the representation of that Boolean function in a truth table. Now as we
increase N, the size will grow and this size will actually grow exponentially for a truth
table why because N is in exponential, 2N. So, truth table size increases exponentially
with the number of Boolean variables and therefore, we can say that the truth table is not
a compact representation its size is simply growing exponentially as the number of
variables is increasing. What it essentially means that we cannot represent a a big
function in terms of number of variables for example, there are 100 variables we cannot
think of representing it in terms of truth table.

And, why because it is not a compact representation. On the other hand for example, say
logic formula for example, we say y=ab+acd+b’d+bc’ this can be very compact
representation. If we allow this logic formula representation to be flexible then this logic
formula representation can grow not exponentially, but at a slower rate than truth table
and it can represent bigger functions. Now what do we desire in terms of compactness of
a Boolean function representation? We want that a Boolean function representation
should be as small or as compact as possible. Why do we want such a behavior because if
a Boolean function is very compact then we can represent in computer as data structure
and the size of that data structure will be smaller and therefore, it will consume less
memory and also it will be probably easier to manipulate those Boolean functions. So,
ideally we want that our Boolean function representation should be as compact as
possible.

Now there is another attribute of a representation of a Boolean function and that is
known as canonicity. Now what is meant by canonicity? Canonicity: if a function is
canonical or if the representation of a Boolean function is canonical then two equivalent
functions are represented identically. So, if there are two equivalent functions suppose



there is a function f1 and there is an f2 and we say that these two functions are equivalent
then the representation of these two functions will be identical that is what we mean by
canonicity. Now conversely if a representation is canonical and if two functions have the
same representation suppose f1 and f2 had the same representation then what it means
that these two function will be essentially be equivalent. So, if in a representation these
two properties are satisfied then we say that this representation is a canonical
representation.

For example, a truth table is a canonical representation of a Boolean function why
because if we exhaustively list rows for a truth table and maintain a variable order a given
function can be represented in truth table in only one particular way there is no other way
in which a Boolean function can be represented and therefore, a truth table is a canonical
representation. And whether a logic formula is a canonical representation? No the logic
formula is not a canonical representation. For example, if we take a function y=ab+ac+bc
this is one representation. Now this same function can be represented in terms of logic
formula as y=a(b+c)+bc that is we have taken a as common and then we have factored.
And similarly we can write as ab+c(a+b) this is another representation then we can add a
redundant product term and get another representation aa’ is essentially 0. So, we can add
it anywhere and the function will be still the same.

Similarly we can multiply any function with (a+a’) which is essentially 1 and we get the
same representation or same function and the representation is different. So, a given
function can be represented in many forms as a logic formula and therefore, a logic
formula is not a canonical representation. And in general we want a representation to be
canonical why we want it to be canonical because manipulating a Boolean function
becomes easier if it is canonical. For example, if you want to test the equivalence of two
functions we can just check their representation maybe in terms of just pointer value and
see whether those representations are same. If those representations are same we know
for sure that these two functions are equal.

So, thus manipulating Boolean functions becomes easier in canonical representation. So,
ideally what do we want? Ideally we want that the representation should be compact
meaning the size should not be growing exponentially, but growing at a slower rate and it
also should be canonical. Ideally these are some of the attributes that we want for a
Boolean function representation for formal verification and also in logic optimization and
logic synthesis. So, these compact canonical representation of Boolean functions are very
very important.

But what we typically see is that, for example truth table. So, if we say there are two
attributes of a representation one is canonicity and the other is say compactness. Then for
say truth table, we can say that it is not compact, it is exponential therefore, this is not a



good attribute, but it is canonical. And if we look for say logic formula, then for a logic
formula, it is a compact representation, more compact than a truth table, but it is not
canonical. So, typically we do not have both these attributes together meaning canonicity
and the compactness, but thankfully we have a representation which is known as binary
decision diagram which has these characteristics, canonicity and compactness for many
kinds of functions or many kinds of useful functions which are useful from the
perspective of VLSI. Now, let us look what is a binary decision diagram or BDD. BDD is
a data structure to represent Boolean functions canonically.

So, BDD is a canonical representation of a Boolean function and BDD is compact for
many practically relevant functions. So, it is compact for many of the functions which are
of practical relevance in VLSI, not for all. So, we will see for which cases it is not
compact, but BDD is a canonical representation and it is compact for many useful
functions. Now, additionally there are several Boolean operations which are relevant to
formal verification that can be carried out very efficiently using BDD and therefore, BDD
finds a lot of application in formal verification. Now, how do we build a BDD or BDD
representation for a given Boolean function? We take help of Shannon expansion and
what is Shannon expansion? Shannon expansion basically splits a given Boolean function
into two sub functions.

The sub function that is obtained by assigning 1 to a variable or 0 to a variable. Now, if
we create two sub functions from a given Boolean function by assigning value to a given
Boolean variable first 0 and then 1. So, once we assign a value to a variable as 0, the sub
function that we get that is known as negative cofactor and once the sub function that is
obtained by assigning 1 to a given variable that is known as positive cofactor. Now, let us
look into that how we can break or decompose a given Boolean function into negative
cofactor and positive cofactor. Let us take an example, suppose the given function was
ab+acd+b’d+bc’.

Now, assume that the given variables on the basis of which we want to decompose it is
‘a’. Suppose we want to decompose it with respect to variable a. Then what we do is that
first assign the value of a as 0. Now, if we assign value to a as 0 this term will become 0,
this term will also become 0 and will be left with these two terms. So, this function y0
that we obtain after assigning a=0 this is known as negative cofactor. And then what we
do is that we assign a=1.

Now, if we assign a=1, then what happens in this, this a term goes away and in this a
term goes away. So, we are left with y1=b+cd+ the other terms and this sub function that
we obtain after assigning a=1 is known as positive cofactor. And we can write this
function y in the expanded form as y=a’* the negative cofactor, this part. We have



factorized or we have expanded with respect to the variable a and for the negative
cofactor a’ comes in the function. And for the positive cofactor we take a without taking
its complement.

So, the same function y can be represented in this way a’*negative cofactor+a* positive
cofactor. So, intuitively we can understand why this function and this function are
equivalent or are the same. The reason is that if a can take only two of the possible values
if a takes a value 0, then this term goes away and we are left with only the negative
cofactor term. Similarly, if a takes a value of of 1 then this term goes away and this term
takes a value of 1 and we are left with a function which is nothing but the positive
cofactor. And that is why this representation of the function y in terms of positive and
negative cofactor is correct.

Now Boolean functions can be represented as binary decision tree by applying Shannon
expansion theorem recursively. We apply the Shannon expansion theorem first with
respect to one variable, we get two functions, then to each of these sub functions we do
Shannon expansion with respect to another variable. And recursively go on doing it until
we reach the leaf level meaning the function takes a value as 0 or 1. So, let us take an
example how we can build a binary decision tree using Shannon expansion theorem. So,
let us take an example of a function y=x1x2+x2’x3+x1’x3’.

So, now let us first expand with respect to x1. So, if we expand with respect to x1 then
we first take x1=0, if we take x1=0 then this term goes away and we are left with these
two terms. Similarly, if we take x1=1 then this term becomes this term becomes x2 and
this term x1’, this term goes away and we are left with these two terms. So, first we



expanded with respect to the variable x1. Next we have got two functions which are
functions of x2 and x3.

Now let us expand it with respect to x2. If we expand with respect to x2 the first function
we uptake x2=0 if we take x2=0 this term will become 1 and we will be left with x3 plus
x3'. Similarly, now we take x2 as x2 as 1. Now if we take x2 as 1 this x2' becomes 0 and
this term goes away and we are left with x3. Similarly, we carry out expansion for this
sub function and we get two more sub function with a by Shannon expansion. Now
initially we started with one function, we got two sub function, now we got four sub
function.

Now we again expanded with respect to x3. Now for this sub function, we take first
x3=0, if we take x3=0, then this term will become 1 or this sub function will become 1.
Next we take x3=1, then this term goes away and this becomes 1 and therefore, this
function sub function becomes 1. Similarly, we expand each of this sub function with
respect to x3 and we will get eight such sub functions and since we have exhausted all the
variables now we will get the final value or the function will take a value of 0 or 1. Now
we can represent these functions in the form of a tree we will take these elements, the
final value in terms of 1 and 0 as the leaf of the tree and build functions. So let us see. So,
this is the function f now we say that x1 takes a value 0.

So, this whole part represents the sub function or positive or negative cofactor with
respect to x1 and this part represent the sub function which we get after making x1 as 1
and therefore, this represents a positive cofactor. Similarly, we get negative cofactor for
each of the child and finally, we get the leaf level values which is nothing but the leaf
level functions that we obtained after applying recursive Shannon expansion to the
functions. Now is this representation compact of course, not why because at the leaf we
will have 2N elements if there are N variables in the Boolean function. So, this kind of
representation is similar to a true table because we will have the number of leaf nodes
will still be exponential.

So, it is not a compact representation. Now is it canonical, it may not be canonical if we
apply, if we choose different vertices while expanding. For example, if we leave the
freedom to choose any variable at any time while doing Shannon expansion then it may
not be canonical also. For example, in this path if we say choose x2 as the variable on
which we are expanding and in other we take x3 as a variable on which we are expanding.
If we do that or we allow the freedom to do that then this Boolean decision tree
representation is not even canonical. But the good thing is that we can make this
representation compact as well as canonical as we will just see. Now at an intermediate



node we can choose any variable for expansion in binary decision tree that is what we can
choose either x2 or x3 at different levels.

So, in general different variable orders can give different binary decision tree. Now for
example, this is one representation and this is another representation. Here we have
chosen x2 and here we have chosen x3 for expansion, here we have chosen x2 and x2. So,
in this path, the variables chosen are x1, x2, x3 in that order and in this branch we have
x1, x3, then x2 and so on. So, the variable order is not fixed. Now to enforce canonicity
we need to add constraint on the binary decision tree and so once we apply this constraint
then what we get is an ordered binary decision diagram or OBDD.

What is an OBDD? OBDD is a binary decision diagram or binary decision tree becomes
an OBDD if the decision variables follow the same order in all the paths from the root to
the leaf. Meaning that if we apply the constraint that the path from the root, this is the
root node for this tree and these are the leaf nodes. If we enforce the constraint that the
order of variables from root to leaf is always the same mind that some variables may be
missing also, but if the constraint is such that the order from the root to the leaf, the
variable separating in a path is always the same, then we say that it is an ordered binary
decision diagram. Now let us look into ordered binary decision diagram more formally.
So, let us take a Boolean function, Boolean function f(x1, x2, x3, …, xn) which is
consisting of n Boolean variables.

And then for this function, we build an OBDD and what is an OBDD? OBDD is a rooted
directed acyclic graph consisting of only two types of vertices. So, what is an OBDD? It
is a rooted directed acyclic graph and what does a OBDD contain? It contains only two
types of vertices one is the terminal vertex and other is non terminal vertex. And what are
the characteristics or attributes of these terminal and non terminal vertices? So, terminal
vertices will have outdegree=0 meaning that no edge will go out from a terminal vertices
for it those are leaves of the graph of a tree. But note that OBDD may not be a tree. It is a
graph structure, there can be edges going from one to the other and so on. So, we will see
an example of OBDD in subsequent slides.



So, there will be some terminal vertices in this OBDD. So, in terminal vertices there will
be no outgoing edges, there will be no edge going out, only incoming edges. And these
terminal edges will have two types of labels either it will have a label 0 or it will have a
label 1. So, if it has got a label 0 it is known as 0 node and it indicates that the function
assumes a value of 0. And if it is a 1 node then the label will be 1 and it indicates that the
function takes a value of 1. And what are the non terminal vertices? So, each non
terminal vertex v has the following: one is that it will have two children, one is low and
the other is high.

For a given vertex v, there will be a low(v) which indicates its low children and the other
is high(v) which is the high children. And then the vertex v will contain an index and
index will be an integer. It will be from or a function of n variables. The index can be
between 1 to n and it refers to the corresponding variable in the set x1, x2, x3, …, xn. So,
there we have a correspondence between this index and the variable, for example, 1 will
correspond to x1, 2 will correspond to x2, 3 will correspond to x3 and n will correspond
to xn. So, there are vertices in the OBDD and each vertex has a label 1, 2, 3, 4 and these
labels correspond to the variables for example, label 1 correspond to variable x1, 2
correspond to x2, and n correspond to variable xn. Now, each edge between vertex v and
low(v) represents the case when the corresponding variables assumes x index(v)=0.

It means that suppose there was a vertex 8, vertex had the label or index as 8. So, of
course, this corresponds to the variable which is x8. Now it will have 2 child. So, 2
outgoing edge: 1 will be the left outgoing edge, which is the edge between a vertex v and
low(v) represents the case when the corresponding variable takes a value of x index(v)=0
meaning if x8 takes a value 0 then whatever is represented in the fan out of this that
represents the value of the function when x8 takes a value of 0 and this node is known as



low of 8, low(8). Similarly there will be another edge outgoing edge from this where x8
will take a value 1 and it will correspond to high of 8, high(8), meaning that the sub
function which will be represented by low(8) correspond to the sub function when x8
takes a value of 0.

Similarly high(8) is a sub function which represents the sub function obtained when x8
takes a value of 1. Now, to enforce ordering of non terminal vertices we enforce this
constraint. Now we say that from the root to the leaf, the ordering of variables will be in
certain way and to enforce that we say that the index(v) always be less than low(index(v))
and index(v) should be less than high(index(v)) meaning that if there is a low(v) of 8 then
the value of or the index of this node can be 9, 10, 11 or greater than 8. Similarly the
vertex which represent high(v), it will have index which will have value more than 8, it
can have 9, 10, 11 and so on. So what this constraint means is that if we traverse from the
root node to the leaf node with an index will only go on increasing it cannot decrease and
that is why this is an ordered binary decision. Let’s take diagram an example of an
OBDD.

Suppose we are given a function y=x1x2+x1x3+x2’x3. Let us draw the OBDD for this.
So since there are three variables we have these vertices and with each vertex we have
associated variables. For example, this vertex is labeled 1 and with this the variable x1 is
associated, with this the variable x2 is associated and so on. So the vertices which are
shown in shown in orange color those these are non terminal vertices and the one which
are at the leaf at the last these are the terminal vertices. Now at the root we have a label of
1 meaning that we are taking sub functions with respect to the variable x1.

So this sub function basically represents the sub function when x1 takes a value of 0 and
this sub function represents the function or sub function when x1 takes a value of 1 and
this root basically represent the given function y=x1x2+x1x3+x2’x3. Now given a
Boolean function, the OBDD is still not canonical. though it is ordered meaning that if
we go from say the root to the leaf everywhere the path is from 1, 2, 3 and so on. It is
never 1, 3, 2 from the root to the vertex, to the leaf. So therefore, it is an ordered binary
decision diagram, but an ordered binary decision diagram is still not canonical. For
example, we can represent the same function in another way.

So we say that this part is nothing but 0 and therefore, we take an edge from here to here.
And similarly this part is nothing but 1 and therefore, we take an edge directly from 2 to
leaf. Now this is also an OBDD. Note that there can be path from 1 to 2 to leaf directly 3
is not appearing, that is ok, but if 3 appears then it should be only after 3 and that is why
it is ordered.



So this is also an OBDD, this is also an OBDD, but the representations are different.
Now OBDD can be made canonical by removing redundancies. So once we remove those
redundancies then what we get is a reduced OBDD or ROBDD. Now what is an ROBDD?
To understand that we have to understand the concept of isomorphism. So let us
understand what is isomorphism. So 2 OBDDs f1 and f2 are isomorphic if there exists a
one-to-one mapping between their set of vertices such that adjacency is preserved.

So the correspondence of the value at the terminal vertices and the index at the non
terminal vertices must also exist. So let us take an example of isomorphic OBDDs and
then this concept will be more clear. Suppose this is an OBDD and let us understand
whether this another OBDD is this isomorphic to it or not? Now you have a root, here
also we have root and then we have 1, so 1 is here. Now the outgoing edge of 1, the 0
outgoing edge of 1 goes to 2, from here also 0 goes to 2, from 1 again 1 goes to 3, 1 goes
to 3 so these 2 edges are fine.

Now let us look into 2, that for the 2, this is the corresponding vertex. Now for these 2
vertices, the 0 edge goes to 1, and 1 edge goes to 4. Similarly these 2 edges are also fine.
Now let us look into the vertex 3, now for the vertex 3, we see that for the 1 edge goes to
4, and 0 edge goes to 0. Therefore, the correspondence of edge and the adjacency list is
established for 1, 2, 3 vertices. What about 4? Now for the 4, the 1 outgoing edge is 1 and
for the 0 edge is going to 0. So, this is also established and therefore, these 2 graphs are
isomorphic or these 2 BDDs are isomorphic.

Now let us take another OBDD. Now let us see whether this OBDD and this OBDD
these are isomorphic or not. Now we see that from the shape it looks like these 2 are
isomorphic, but here the 0 edge of 4 goes to 1 in this case and in this, 0 edge goes to 0
and the 1 edge goes to 0 in this case and 1 edge goes to 1 here. So, the leaf vertices do not
correspond and therefore, these 2 OBDDs are not isomorphic. So, now we understood
that what is an isomorphic OBDD and what is an non isomorphic OBDD.



Now let us understand what is a reduced ordered binary decision diagram or ROBDD.
ROBDD is an OBDD with the following constraint. What constraints are there in
ROBDD? The first is that there should not be any vertex v which has got low(v)=high(v)
that cannot be. If low and high(v) are same then we need to do some transformation to
make, an OBDD, ROBDD. And there should not be no pair of vertices (u, v) exist in the
OBDD such that the sub graph rooted at u and v are isomorphic, this condition should
also be applied meaning that in the OBDD there should not be 2 vertices which have
isomorphic OBDDs or sub graph rooted at that point. So, we can obtain an ROBDD by
systematically removing vertices from OBDD. What can we do is that any vertex with
identical children we can remove it. If there is a vertex, 0 edge and 1 edge goes to an
identical vertex then we can replace that node with any of its children.

And if 2 vertices with identical OBDDs are there then we merge them into 1. So, let us
take an example and see that how we can obtain an ROBDD using OBDD. Suppose this
is an OBDD which is given to us now how can we get a reduced ordered binary decision
diagram or ROBDD. Now in this OBDD we see that for this vertex 0 and 1 edge both
leads to 0 and for this both leads to 1. So, what we can do is that we can remove this 3
vertex and directly connect this to 1. Similarly, we can directly connect it to 0 and we can
remove all these node.

This is the first reduction, we remove any vertex with identical children. Now, the other
thing we can notice that if we consider this vertex 3 and this vertex 3 we have an identical
isomorphic OBDD rooted at 3, 0 goes to 0, 1 goes to 1; 3, 0 goes to 0, 1 goes to 1. So,
these 2 are identical what we can do is that we can remove one of them and point this 0



edge to this and we will obtain the reduced ordered BDD. So, this is a well drawn
diagram. So, what we have done is that we have simply removed these 2 vertices which
leads to identical sub graphs.

So, we have removed this and corresponding to 1 we have now 0 directly. So,
corresponding to this we have only this edge and corresponding to this 1, we have
removed this and we have got 1 vertex. So, this edge. And now 3, these 2 vertices were
identical, these 2 vertices had isomorphic OBDDs. So, we removed one of them. So, we
have this vertex 3, whose 0 edge goes to 0, 1 edge goes to 1 and both this and this points
to the same vertex.

So, this is how we can create an ROBDD from a given OBDD. Now, what we have done
is that now given a binary decision diagram, we enforce the ordering of variable, then we
got ordered binary decision diagram and on ordered binary decision diagram, we perform
some reduction operation and remove the redundancies. Once we have removed the
redundancies from OBDD we get what is known as ROBDD and Bryant who was the
inventor of this BDD proved that an ROBDD is a canonical representation of a Boolean
function. Meaning that if there are 2 functions which are equivalent then their
representation will be identical in ROBDD. Meaning we cannot represent a given
function in 2 different ways. There has to be only one representation for 2 equivalent
functions. Similarly, if there are 2 functions and their representations are same then we
can derive or deduce from that, that these 2 functions are equivalent, it has to be equal.

So, Bryant proved mathematically that ROBDD is a canonical representation of a
Boolean function. And in typical literature and when we talk of BDD we actually refer to
ROBDD, reduced order binary decision diagram. Because the ROBDD are really useful
because they are canonical and many a times for many useful Boolean functions they are
compact. Now what are the applications of BDDs? So, the application is that the testing
of equivalence of 2 function becomes very very easy why because if we have represented
functions in a BDD in popular BDD packages then their representation in terms of
pointers will be exactly same. And by just comparing the pointer we can say if 2
functions are equivalent or not. And testing satisfiability and satisfiability meaning that
given a function, can the variable assignment be made such that the function takes a value
as 1.

Now just looking at the BDD and comparing whether there is a path from that node to a
1 node we can say that it is satisfiable or not satisfiable or it is a tautology meaning that
whether a function is always taking a value 1. If that is the case then there will be for a
Boolean function representation the ROBDD will be just 1 node that is the leaf node
having a value of 1. So, set testing satisfiability and tautology and testing for equivalence



of Boolean functions they become very easy using BDDs. And what about the
compactness of a BDD or ROBDD? So, we have seen that ROBDD are canonical that is
a very powerful tool for us for formal verification. But what about the size of BDD? So,
the size of BDD or ROBDD for many Boolean functions grows as polynomial with the
number of variables and that is the beauty of ROBDD.

Meaning that it is canonical and for many useful functions it is the representation grows
linearly or grows at a slower rate with the number of variables. However, note that the
size of ROBDD is dependent on the variable order meaning that if we choose right
variable order then probably it will give a very compact representation. If we choose
wrong or not optimal variable order then the size of of ROBDD can grow exponentially.
For example, if we look into say adder circuit. If we represent adder function in an
ROBDD then depending on the variable order the size of ROBDD can be linear or it
could be exponential. So, the order of variables has to be chosen carefully while building
an ROBDD. Now, but the problem is that finding a good variable order is difficult and
tools, BDD packages use various heuristics to come up with a good variable order so that
the size of the Boolean representation remains compact. For some functions such as
multiplier, the size of ROBDD is always exponential. So, we should not think that
ROBDD is always compact and we can always make it compact by choosing a good
variable order. The first problem is that choosing a good variable order is not an easy
problem and the second problem is that there are some functions for example, multiplier
function for which the BDD representation will always be exponential. So, BDD
representation is very useful, but in some cases it may not help and therefore, we look at
other techniques also for formal verification. So, if you want to look further into the
topics that we discussed in this lecture you can refer to these materials.

Now, let us summarize what we have done in this lecture. So, in this lecture we have
looked into formal verification and how it differs with simulation based techniques and
we also looked into two methods or techniques that made formal verification popular for
VLSI design flow and these two techniques were the compact and canonical
representation of binary decision diagram or reduced order binary decision diagram and
the second technique is the efficient SAT solvers or Boolean satisfiability solvers. So, in
this lecture we had looked in detail binary decision diagrams and in the next lecture will
be looking into what is the satisfiability problem and what does an efficiently
satisfiability solvers do. Thank you very much. .


