
VLSI Design Flow: RTL to GDS
Dr. Sneh Saurabh

Department of Electronics and Communication Engineering
IIIT-Delhi

Lecture 2
Basic Concepts of Integrated Circuit: II

Hello everybody, welcome to the course VLSI Design Flow: RTL to GDS. This is the
second lecture. In this lecture, we will continue with the basic concepts of integrated
circuit. In this lecture, we will cover the types of integrated circuits, design styles,
economics, and figures of merit for an integrated circuit.

First, let us look into a very top-level understanding of what is a VLSI design flow. So,
VLSI design flow is a methodology to design an IC such that it delivers the required
functionality or behavior. So, it is a methodology of designing an IC, and the goal is to
get the required behavior from the IC. Now, on what factors does a VLSI design flow
depend on? What decides the VLSI design flow? The VLSI design flow depends on the
type of integrated circuit. And what are various types of integrated circuits? We can
divide or categorize integrated circuits based on the application scope or design styles.

Let us first look into the various types of integrated circuits based on the scope of
application. So, there are two types of integrated circuits based on the scope. The first is
application-specific integrated circuits or ASICs, and the second is general-purpose
integrated circuits. Let us understand the differences between these two types of
integrated circuits. In terms of functionality, an ASIC or application-specific integrated
circuit is targeted to perform a specific task or a particular end system. It is designed for a
particular application, which is why it is known as an application-specific integrated
circuit, while general-purpose integrated circuits are designed to perform a wide range of
applications.

Let us look at an example, and then it will become clear. So, an example of an
application-specific integrated circuit is an integrated circuit for a digital camera or an
integrated circuit for audio/video processing or security chips. Here, the application is
very well-defined. For example, the chip digital camera is used just for the digital camera.

While, a few examples of general-purpose integrated circuits are microprocessors. So,
we know there are many types of microprocessors, and we can use microprocessors for
many different applications. Similarly, memory can also be used for many applications.
Then, if using an FPGA, we can realize many different functions or functionalities. So,



microprocessors, memories, and FPGAs are examples of general-purpose integrated
circuits.

Regarding programmability, the ASICs or application-specific integrated circuits are not
that much programmable. Why? Because they are not targeted for those kinds of
applications. Because they are not targeted for general use, they are targeted for specific
purposes, and therefore, the programmability will cater to that particular purpose only.
While general-purpose integrated circuits such as microprocessors are highly
programmable, even FPGA can be programmed, and you can get different functionality
out of it. So, general-purpose integrated circuits are usually software-programmable and
perform a wide variety of different tasks.

And regarding the production volume, the volume of application-specific integrated
circuits is less. Why? Because they are targeted for a particular application, and the
requirement for those targeted applications may not be for a high-volume product. While
general-purpose integrated circuits like in microprocessors, FPGAs are general in nature.
There are wide applications for those chips, and therefore, they will be catering to a
bigger market. Therefore, the volume of production for general-purpose integrated
circuits will be typically more than for ASICs.

Now, let us look into the various types of design styles. So, based on the types of design
styles, we can categorize integrated circuits into the full-custom design, standard-cell
based design, gate-array based design, or FPGA-based design. FPGA is a short form for
field programmable gate arrays. Now, we will look into these four types in more detail.

Now, what is a full-custom design? In the full-custom design, we design the circuit at the
transistor level, i.e., at the lowest level, and we decide the layout of the transistors, the
geometric aspect like W by L of the transistors, and how those transistors are connected,
etc. So, the layout of the transistors and the interconnections are design-specific. We are
designing at the transistor level in full-custom design, and as a result, since we are
designing at a very low level, we need to make a lot of decisions manually. And therefore,
a huge design effort will be required in full-custom design. There are only a few designs
that are full-custom. A few examples of full-custom designs would be, say, analog circuit
designs or mixed signal designs where the design produced by manually designing at the
transistor level typically achieves better results or better performance and other measures
for analog circuits compared to the automated flow. In those cases, the full-custom design
is done. Or the case in which there is a high volume product, for example, a
microprocessor, which is a very critical product, and in that microprocessor, there is some
critical path, and in that path, we will be trying to design at transistor level because we
want to improve the performance of that particular path to a much much much higher
level. Therefore, the full-custom design may be undertaken for those particular paths in
microprocessors or high-volume products. But in general, full-custom designs are less



undertaken than other types of design styles. And what is the merit of full-custom design?
The merit is, of course, the optimization. We design at the transistor level; therefore, as a
designer, we have a lot of flexibility for a full-custom design, and if we have that
flexibility, we can utilize it to improve the quality of our design and, as such, the quality
of full-custom design can be much better than other types of design styles.

The other design style is standard-cell based design. So, in standard-cell based design,
what is done is that first, we design standard cells. Now, what are standard cells?
Standard cells are simple cells such as AND gate, OR gate, flip flops, simple adders, etc.
So these are gates, logic gates, or simple cells; these can be macros and complex cells
such as full adders, multipliers, and memories also. But what we do is that we first design
these small cells at a transistor level: AND gate, OR gate, and other standard cells and
characterize them and put that information in a kind of library. Once we have designed
those AND gates, OR gates, and those kinds of standard cells, we do not touch the
transistor; we treat the complete standard cell as a unit and use that in our design.

So, there are two levels of designing done in standard-cell based design. First, the
designing of the standard cell which is done at the transistor level, and we do it very
optimally; we design each of the cells and then put all that information in a kind of
library, and in the next step, what we do is that use those standard cells, which are in the
library, in our design. So, for a designer who is doing a general design using standard cell
design, in that case, the level of freedom is only which standard cell to use, how to
connect them, and how to put them on the layout. The internal details of the standard cell
are not allowed to be changed by the designer who is making the design. So, when we
make these standard cells, we typically keep the height of the standard cell fixed, and as
such, the properties of these standard cells are well defined in terms of geometry and
other things, and therefore, it allows a high degree of automation. For example, we can
put the standard cells in a row kind of structure.

Why we can put it in a row because the height of all the standard cells are the same;
therefore, we can put all of them in one row and then make the connections. So, these are
standard cells, and in a standard cell design, we can also use macros, which are bigger
cells, for example, multipliers, memories, etc., and we can also have IO pads. Now, rows
of standard cells are used in standard-cell based design with interconnections between
them. The custom blocks can also be embedded in a standard-cell based design. The type,
location, and interconnections of standard cells are design-specific. So, since we are
allowed to change the location of the standard cell (and the standard cell internally
contains the transistor), it means that when we make a design, all the layers, the masks
related to the device layers, and the interconnect layers will be design-specific. So, the
designer only knows where the devices are on the layout. Why? Because where to place
the standard cell exactly, that freedom is still with the designer. We are not changing the



location of a transistor within the standard cell, but one standard cell can be placed over
the layout anywhere as per the wish of the designer.

The third type of design style is gate-array based design. So, in gate-array based design,
what happens is that the transistors are predefined on an IC in the form of a gate array. So,
the transistors are predefined. So, the designer has no control over where the transistor
will be on the layout as that is predefined. In a gate-array based design, the smallest
element that is repeated to form a gate-array that is known as a base cell or primitive cell.
So, this base cell or primitive cells are pre-placed on the layout. The designer can change
the interconnections between these transistors. Since the devices are already at a fixed
location, the device layer will not change, but the designer can change the metal layers or
the connections between the primitive cells. Therefore, the top layers of the gate-array
based design are design-specific. So, for gate-array based design, realizing some
functionality, for example, memory, can be very difficult. Why? Because we have only a
primitive cell and, we have to design everything in terms of primitive cells. However, the
vendor of gate-array based design may have products in which these memories, micro-
controllers, etc., are pre-embedded in the layout of the gate-array based design, and those
can be reused for obtaining the functionality.

The fourth design style is FPGA-based design. Now, in an FPGA-based design, what
happens is that the hardware is fixed. The designer does not have any control over the
hardware, meaning the structure that is there is already there. What the designer can do is
they can program the connections between the hardware. A designer can obtain the
desired functionality by programming, and programming makes changes in the
interconnections between the elements of the circuits. So, what are the elements of the
circuit inside an FPGA board? So, FPGA consists of an array of logic blocks. For
example, there are logic blocks, and there will be IO blocks, which are at the periphery
through which the signal can enter and leave, and there can be routing channels, which
are basically used for making connections between different logic blocks. So, logic
blocks can be programmed to perform different functions such as AND, OR, adder, etc.
So, the functionality of each of the logic blocks can be changed as per requirement and
also their interconnections. However, understand that the hardware is fixed. Once you get
hardware from an FPGA vendor, hardware cannot be changed.

However, the internal connections within the hardware can be programmed, and the
vendor typically gives some tools to program that hardware through high-level languages.
So, FPGA boards may also have embedded microprocessors and analog components and
blocks for performing special functions such as DSP block, and the most popular FPGAs
are Xilinx, AMD FPGA boards, Altera, or Intel boards, which are used typically in the
semiconductor industry. Now, to summarize, what are the differences in the design styles?
We should understand the design styles carefully because our design flow depends on the
design style used. So, in this course, we will typically look into the standard-cell based
design. This is the area in which this course is working, though the concepts that we will
be using will be applicable at least partially for FPGA-based designs, and a lot of them
will also be valid for custom-based designs.



Let us summarize the differences between these four design styles. So, the full-custom
design style is a design style in which the customization is done at the level of transistors
and layout. In the standard-cell based design, customization is done at the level of
interconnections between standard cells and also the instances that will be used inside our
design that is customized by the designer. In gate-array based design, only the top-level
inter connections are design-specific; the transistor is predefined. In the FPGA board, the
complete hardware is predefined. We can only change the connections by programming,
and the functionality of individual logic blocks can be changed.

Now, in terms of design effort, the full-custom design requires the highest effort.
Standard-cell based design will also require a high effort, but less than full-custom design,
and gate-array based design and FPGA-based design require lower design effort. Then,
there are the mask layers. In full-custom design, the mask layer for all the layers, the
device layers, and the interconnect layers will be custom or design-specific. In standard-
cell based design also, the mask will be design-specific for the device layer and the
interconnections. For gate-array based design, only the top-level mask will be design-
specific. The device layer is predefined, there is no control of the designer over them.
And in FPGA-based design, the hardware is given by the vendor, and the designer does
not have control over the hardware.

Then, in terms of power, performance, and area, i.e., the quality of the design that we get,
the full-custom design is the best because we are designing at the transistor level, and we
have the full flexibility to make our own design, and therefore, full-custom design can
achieve the best power, performance, and area measures. The standard-cell based design
is also very good in terms of power, performance, and area. And comparatively, the gate-
array based design and FPGA-based design are inferior in terms of quality. However, the
strong point about FPGA-based design is that the design effort is less, and if there are any
bugs, it can be easily fixed in an FPGA-based design by reprogramming. Now, there are
different design styles. When we start a project, how do we choose which design style we
need to use in our project: i.e., FPGA-based, full-custom, or standard-cell based design?
One of the major factors in making this decision is the economics of the integrated circuit.

So, what we mean by the economics of integrated circuits let us understand that. If we
consider the cost of an integrated circuit, there are various components, and we can
divide it into two types: the first one is fixed cost, and the other is variable cost. So, fixed
costs are those cost components that do not depend on the volume of the product,
meaning that if we produce, say, ten items or 1 million items, the cost will remain the
same. Those costs are known as fixed costs. For example, the cost of designing a circuit.
As the designing will be done once, the design effort is a fixed cost; either we produce,
say, 100 chips or we make 1 million chips, the design effort will be the same, and that is
why it is a fixed cost.

And then, there are costs related to software tools that we use in designing again; those
are one-time costs. The hardware that we require for designing, for example, the CPU,
the computers that we use to make the designs, etc., are fixed costs that do not depend on



the volume of the product or the chip that we manufacture. And the cost of the mask. So,
the mask is also made once. The same mask is used multiple times, and that is why that
makes the copying of the integrated circuit much easier because the mask is prepared
once at a very high level of accuracy. That mask is replicated on the integrated circuit. So,
the cost of developing that mask is a fixed quantity, which does not depend on the
volume. Whether we make 100 chips or 1 million chips, the mask will still be fabricated,
and the cost of the mask will depend on the number of layers.

And then there are variable product costs, for example, the cost of the wafer. Now, when
we take in a wafer and make a circuit on the silicon wafer, we need to use chemicals, for
example, for photolithography and other stuff. Now, those chemicals will be dependent
on the volume. If we are making lots of products, then more chemicals will be required,
and therefore, that is a variable cost depending on the volume of manufacturing. The cost
of the die depends on the area or the size of the die. If you have a small die, you can have
many of those small chips on a given wafer. But if you have a larger area, then on the
same wafer, you will have a less number of dies on that wafer. Therefore, the size of the
die will impact the cost of the die, so that is a variable cost. Depending on the volume of
dies or chips produced, you will incur more cost or less cost.

And then we have yield; yield means that out of, say, 100 chips that we manufacture,
how many chips are defect-free? So, manufacturing is a complicated process, and when
we manufacture a chip, all of them cannot be defect-free. Typically, if more than 95
percent of the chips are defect-free, we say the yield is good. So, yield defines that out of
all the manufactured chips, how much percentage is good? So, the variable cost will
depend on the yield. If the yield is high, the variable cost will come down.

So, these are the major divisions of cost for integrated circuits. So, we can write that as:

Total product cost = Fixed product cost + Variable product cost × Number of Product

So, as the number of products increases, the variable product cost per piece remains the
same, but the number of products will increase. The fixed cost will remain the same. So,
now let us compare two types of design styles.

Let us compare standard-cell based design and FPGA-based design and compare the
fixed cost and variable cost. Now, for standard-cell based design, the fixed cost is high
because it requires more design efforts and more costly tools, i.e., EDA tools for
designing, it will require all the masks customized for a design, etc. So, the fixed cost will
be higher for standard-cell based design, but it will be lower for FPGA-based design
because to get a design, we just need to do the programming, and therefore, the design
effort will be low, and therefore, the fixed cost will be low. And what about the variable
cost? Now, for standard-cell based design, the variable cost per unit product will be lower.
This is because the cost of the die will be lower as we can optimize our design to occupy
less area, and the die area can be reduced. As such, you can get more dies on a given
wafer, and therefore, the variable cost can be reduced. For FPGA-based design, we get
hardware from the vendor, and we do not utilize the complete hardware for our



functionality. Therefore, the cost of the die will be higher for FPGA-based design
because the area will be larger for FPGA-based design. Because of the larger area, the
yield will also be lower (we will see how), and in effect, what happens is that the variable
cost of FPGA-based design will be higher compared to the standard-cell based design.

Now, to give you a very crude estimate of what the cost will be like for the FPGA-based
technology and standard-cell based technology. This is a very crude model in which we
assume that the variable cost is a linear function of the number of units. So, for the
standard cell technology, the fixed cost will be higher compared to FPGA-based
technology, but it will be rising at a slower rate because the variable cost is lower for
standard-cell technology. For FPGA technology, the fixed cost will be lower, but it will
be rising at a steeper rate with the number of units compared to standard-cell based
technology. Therefore, there will be a break-even point, and below this break-even, the
FPGA technology will have less cost for a given volume, and above this break-even point
(in the right region), the total cost for a given number of units that will be lower for
standard-cell based technology. So, this analysis means that typically, for small volume,
FPGA is better, and for large volume standard-cell based design would be better. The
cost versus the number of units may not be a straight line as shown in the figure. This is
just for the illustrative purpose.

Now, in addition to economics, another important factor that decides which design style
to use is the figures of merit for an integrated circuit. Now, what do we mean by figures
of merit? So, when we make an integrated circuit, the fundamental question is how to
measure the goodness of that integrated circuit, meaning how good it is compared to
some other design type of integrated circuit. So, to measure or assess the goodness of the
integrated circuit, we use some figures of merit. So, three important factors that are
considered important figures of merit are: power, performance, and area.Together, they
are known as PPA.

So, what is power? Power is the sum of static and dynamic power consumed by an IC.
So, an IC can be doing active computation. So, the power consumed by an IC when it is
doing an active computation is known as dynamic power. Power consumed when the IC
is not doing active computation is known as static power dissipation. These two numbers
define the power numbers for an integrated circuit.

The other figure of merit is the performance, meaning how fast the chip works. So,
typically, it is measured by the maximum clock frequency at which an IC can work. For



example, if the IC is working at a higher clock frequency, then we say it is operating
faster. The third figure of merit is the area of the die for an IC because that determines the
variable cost. So, typically, for a chip, we will say that for this particular integrated
circuit, these are the PPA numbers. For example, we can quote that (1 W, 2.0 GHz, 1
mm2). So, this represents the power, performance, and area numbers, respectively. So,
typically, when we design an integrated circuit, we quote the PPA or figures of merit for
that integrated circuit.

Now, in addition to PPA measures, there are other figures of merit. What are other
figures of merit? Those are testability, reliability, and schedule. What do we mean by
testability? Testability means how well we can test an integrated circuit. As we discussed,
when we manufacture an integrated circuit or fabricate an integrated circuit, all are not
defect-free. Some may have defects, and most of them will be defect-free. But we want
only a good product or an integrated circuit without any defects to reach the customer. So,
we want the chip, the integrated circuit that we manufacture, to be tested. Before shipping
it to the customer, we want to test it and then only give it to the customer so that the
customer does not get any faulty products. So, how well we can measure or test the
product after manufacturing that is known as testability. Some integrated circuits may be
very good testable, meaning that if it is defective, we can know there is a defect. Some
integrated circuits may not be that easy to test. The testability of that product will be
lower, and a bad integrated circuit for that particular badly manufactured integrated
circuit, for that case, can reach the customer and can be troublesome for the reputation of
the company.

The other figure of merit is reliability, meaning how the performance of a chip or the
quality of a chip or an integrated circuit deviates from the rated behavior with time. We
want that, with aging, the performance of our chip should not degrade below the
acceptable limits for at least the rated age of the chip. So, that measure is the
reliability. Another figure of merit, i.e., schedule, is very important. Schedule means how
much time we have taken to make a design, or this is also related to time to market.
Given a specification, how much time did we take to design that chip? Typically, the
success or failure of a product highly depends on the schedule. If we can design a product
or an integrated circuit very quickly, we can bring it to the market quickly and capture the
market share. Therefore, the schedule or the time spent in design is very important and is
one of the important figures of merit for an integrated circuit.

These figures of merit are also known as quality of results, especially when these results
are obtained using EDA tools, and we get a measure of the performance, power, area, and
other metrics, then we call these figures of merit as quality of results. Moreover, an
important characteristic of these figures of merit or quality of results is that when we
improve one of these characteristics, the other characteristics or other measures can come
down. For example, in a circuit, we want to improve the speed of the circuit. We can
improve the speed of the circuit by using a bigger transistor or a transistor that drives the
load very quickly or use a wider transistor. But as a result of improving the performance
or speed, we are increasing the area of our design. Therefore, when we improve the
performance, the area also goes up, which is a bad thing, and typically, when we improve



the performance, the power can also go up. So, when we improve one metric, the other
metrics can actually degrade, and therefore, designing is always a step or a process in
which we have to choose a trade-off. So, we always have to trade-off some measures to
improve others. So, when we design, we need to understand these aspects very carefully,
that when we are improving one metric, what other metrics are becoming bad, and
whether that is acceptable or not.

The problem becomes more complicated because the dependency of these figures of
merit on the design parameters is very complicated, and finding a mathematical optimum
for these figures of merit is rarely known or difficult to achieve. That's why the goal of a
design flow is not to go for an optimum solution because we usually do not know the
mathematical optimum. The goal of the design flow is to find one of the feasible
solutions with acceptable figures of merit. We design such that we get a feasible solution
and the figures of merit are acceptable as per our requirement. So, this is the design goal,
and in the following lecture, we will be looking into how we can achieve these design
goals in a design flow or what is the role of design flow in achieving these figures of
merit in some better or optimal way.

So, this brings us to the end of this lecture. These are some of the important references
that I have used in this lecture. Thank you very much.


