
VLSI Design Flow: RTL to GDS
Dr. Sneh Saurabh

Department of Electronics and Communication Engineering
IIIT-Delhi

Tutorial 4
Lecture 18

Simulation-based Verification using Icarus

Hello everyone, my name is Amina Haroon and I am a PhD student at IIIT Delhi and I
will be your TA for the course VLSI Design Flow. In the previous tutorial, you learned
about the high level synthesis. In this tutorial, we will see how to perform a simulation
based verification of a digital circuit modelled in Verilog. To do that, I will be using an
open source tool called Icarus Verilog, but you can use any other tool as well. So let us
begin. Also in this video, I will be referencing a tutorial sheet and that sheet will be
shared with you.

So we will see how to install the Icarus Verilog. So I expect that you already have Linux
distribution on your system. I am using Ubuntu. Now you need to launch the terminal of
Ubuntu and type the following command git clone and go to the website of iverilog and
copy the link from there.

$ git clone https://github.com/steveicarus/iverilog.git

So this will start cloning the GitHub repository. So it is done now. Let us check the
contents of the directory by typing in the following command that is

$ ls

So a folder is formed that is iverilog. You need to change into the iverilog directory.

$ cd iverilog

Once we are in that directory, we will start building the configuration files. The
command for that is

$ sh autoconf.sh

But it says that there are a few dependencies missing. So that is gperf and autoconf.

First you need to do the

$ sudo apt-get update



to update the existing packages. So it is done now. Then you need to start installing the
dependencies one by one. So these commands are already written in your tutorial sheet.
So the command for installing a dependencies is

$ sudo apt-get install gperf

$ sudo apt-get install autoconf

So it is getting installed. Let us wait for a moment. So it is done now. So the next step is
to build the configuration files again because it was not done previously because of the
missing dependencies. So it is completed.

$ sh autoconf.sh

The next step is to configure and the command for that is

$ ./configure

So again it requires few more dependencies, that is, C compiler. So you will see the
description of the error in the tutorial sheet. So it says that there is no C compiler and few
more packages that I have already listed in the sheet.

So you need to install them one by one. So the next dependency that I am installing is
flex. Another one is bison. So the dependencies are installed. Let us go back to the
configure because it was interrupted.

$ sudo apt -get install gcc g++

$ sudo apt -get install flex

$ sudo apt -get install bison

$./configure

So the configure part is done and you can see that configure.h file is showing in your
terminal. Now you need to compile the source code.

$ make



So again it says that the make is not found.

So you need to install the make package.

$ sudo apt-get install make

Make is installed. You need to run the compile source code command again which is

$ make

This will require a few minutes. So the make is done.

Now the next step is to do the

$ sudo make install.

So type in the command. So the installation is done. So you need to first leave the
current directory by typing cd and then launch the tool that is iverilog. So since there is
no source file, it is not doing anything. We will see how to use this tool with an example
later in the demo.

$ cd

$ iverilog

Another tool that we require is a waveform analysis tool. So I am using GTKwave tool
which is an open source tool and you can use any other tool as well. So let us begin. So to
install the GTKwave tool, you need to first go to your Linux distribution and type in the
following command that is

$ sudo apt install gtkwave

So this will take few minutes to run.

So it's done now. You can launch the tool by typing

$ gtkwave

and it looks like this. Another tool that I will be using is code coverage tool called
Covered which is an open source tool and it is used to check whether the test bench has
the diversified set of a stimuli. But you can use any other tool as well. So let's start. So
the steps to install the Covered are shown here.

So first you need to clone the GitHub repository. In the terminal type in the following
command git clone and the path to the GitHub repository.



$ git clone https :// github .com/ chiphackers / covered

So it's done. So now I have the covered directory in my working path. You need to
change to the covered directory.

And let's start the installation process. So let's type in the command

$ ./configure

It's done now. The next step is to compile the source code by using the command

$ make

However, it comes back with error.

So it says that it requires few more dependencies and I have provided the list of them in
the tutorial sheet. So for that first you need to update the existing packages using

$ sudo apt update

So I'm showing how the first one is installed. You can install them one by one using the
same process. So the required dependencies are installed.

$ sudo apt-get install zlib1g -dev

$ git clone https://git.savannah.gnu.org/git/libiconv.git

$ sudo apt-get install tcl8.6

$ sudo apt-get install tcl8.6-dev

$ sudo apt-get install tk8.6

$ sudo apt-get install tk8.6-dev

$ sudo apt-get install doxygen

Let's do the configure again. Configure is done now. Let's do the make again. This will
take few minutes.

$ ./configure

$ make

So the make is done. The next step is to do

$ sudo make install



So the covered is installed. Let's move to the demonstration of Icarus and covered using
an example. So let's make a directory where you will be keeping your iverilog files. Since
I already have a directory, so I will just change into the icarus_codes.

In this directory, you need to have a verilog code and the test bench for your design
under verification. So let's check the content of my directory and here I have my counter
which is a 4-bit synchronous counter and a test bench. So let's see how the code looks
like. I'm using gedit but you can use a nano or vim etc. So this is how the code looks like
and this is the test bench.



So this is my counter and it has the input signal RST which is a reset signal, the clock
CLK and the output. So at the positive edge of the clock, if reset is 1, the counter sets to 0
and if the reset is 0, then the counter increments at every positive clock edge. Let's see the
test bench. So here the input to my design under verification is RST, CLK and OUT. In
the test bench, there is a Reset signal, clock signal and Count signal.

So you need to connect them accordingly. So it's instantiated and let's explain the test
bench. So at t is equal to 0, the clock is 0 and the reset is 1. At t is equal to 100, the reset
is removed and the counter will increment and similarly the other scenarios. Also the
clock period is 100 time steps and we will save the output in count.vcd file and it will
have clock, reset and count. To simulate, I will be launching the iverilog tool. So the
command goes like this.

$ iverilog -o Mycounter Mycounter .v Testbench .v

So -o tells the tool to save the output in my counter file. Next I will need the design under
verification that is my counter.v and the test bench that is testbench.v. This command
compiles the program. So let's check the contents of the directory. So you can see that
there is a my counter file in the present working directory. Now the next command is

$ vvp Mycounter

So this command will execute the compiled program and now my the outputs are stored
in the dump file called count.vcd. So it's not very convenient to view them in the terminal.
So I will be using the waveform analysis tool the GTKwave. So the command is

$ gtkwave count.vcd

So you can see the CLK, the RST and the OUT.

So let's analyze the result. At the first positive edge, since the reset was 1, the counter is
reset to 0. At the next clock edge, it goes to 1 and 2 and 3 and so on. So this is in
hexadecimal. So it goes up to f then 0, 1, 2, 3, it counts again. Since the reset was 0, but
here the reset goes to 1.

However, this happens at the negative clock edge. So here the reset goes to 1. The effect
of that is visible at the positive clock edge and the counter sets to 0. So now we will
check the code coverage using the same example of counter. Since I'm already in the
present directory, let's check first the contents of the directory.



So it has the vcd file, the design under verification and the testbench. So the command to
check the code coverage report is this, and it will save the output in the .cdd file.

$ covered score -t Testbench -v Testbench.v -v Mycounter.v -vcd count.vcd -o
Mycounter.cdd

So it says that this scoring is completed successfully.

Let's check the contents of the directory. So we can see that mycounter.cdd is now in the
present working directory. So to view the coverage report, the command is this. So here it
shows the code coverage report.

$ covered report -d v Mycounter .cdd

So you can see the covered tool launched. It shows the line coverage results, the toggle
coverage results, the combinational logic coverage results and the FSM coverage results.
You can study them and you can look into the details of this result and this completes this
tutorial. Thank you very much.


