
  So, you had something like a x right belonging to let us say a set of this one p labels right  I 

mean which is a positive examples.  Then the idea is that your you see w transpose x right 

should be such that you want this  to be kind of rate greater than or equal to 0 right and if it 

is if it is if x belongs  to negative examples then ideally right you want this to be less than 0 

right.  And the idea was that I mean you kind of update it right.  So, in such a manner that 

when this condition is not satisfied that means w transpose x  is actually less than 0 then 

you make this update right you say that w new is equal to  let us say w old whatever you 

had plus x right and for the other case right and so the idea  is that right I mean you get 

effectively w transpose x plus x transpose x and since you  since you apply this condition 

only when w transpose x is less than 0 that means you  want to get a boost of that value 

right.  So, that boosting happens right through this x transpose x which is actually greater 

than  or equal to 0.  Similarly when you have negative examples and you have actually 

greater than or equal  to 0 that is when you apply the update rule you make it w minus x 

and which means that  you it becomes w transpose x minus x transpose x which means that 

right you pull that number  down right. 

 

  It is already greater than or equal to 0 you want it to be less than 0.  So, you try to get a pull 

it down effectively by taking w transpose I mean w to be equal  to w minus x.  So, that the w 

new transpose x right becomes w transpose x minus x transpose x, x transpose  x is always a 

number greater than or equal to 0 and therefore right you pull it down  okay and then right 

eventual idea is that you get down get to a point where which then  means that you are see 

cos alpha being equal to w transpose x by norm w into norm x right.  So, the idea being that 

you are see w transpose x should eventually come out to be such that  your so if your w 

transpose x goes up then your then which basically means that your  cos alpha is going up 

that means alpha is coming down. 

 

  So, you sort of end up making acute angles with respect to the positive examples and  then 

obtuse angles with respect to the negative examples right that is the idea and of course  the 

convergence proof and all right is really beyond the scope of this.  Okay now the rate 

universal approximation theorem right which we stated last time.  So, what it is saying is so 

it is like saying that you know if I had examples x right and  I have to actually write build a 

network such that I arrive at some let us say rate g of  x whose analytical form I do not know 

because if it was analytical then it would be far  more easy to solve that problem right.  The 

idea is that you do not have an analytical solution but you have but you are kind of  looking 

for a this one mapping that will take you from x to some ideal g of x and through  the 

network right you are arriving some there is a guarantee that through the network right  

you can arrive at I mean all that that we stated last time that you have now one this  one h l 

right hidden layer which rate if it contains sufficient number of neurons with  whatever 

activations then you should be able to approximate g such that mod g of x minus  f of x right.  

This is let us say less than a positive quantity small positive quantity let us say epsilon  for 

all x time this is what this is what the rate universal approximation theorem says  but then it 

does not say as to how many neurons you need and all that it just says that as  long as you 

have this is sufficient number we should be able to approximate right I mean  it does not say 



what right I mean it does not give a representation it does not tell  how what is the best way 

to achieve this right which is the reason why for example right  if you find out deep 

networks right the very reason why we call them as deep is because  they have several 

layers stacked right one after the other and actually the actual implementation  happens 

through that and not really through one sort of a hidden layer right and that  would have I 

do not know right millions of neurons or something. 

 

  So really what happens is right eventually people figure out that the way to actually  

achieve this because the even theorem per say does not say how to get there right and  that 

has happened over years by let us say right people figuring out how to do this okay  that I 

will just right come to come to that in a moment but before that let us just look  at then what 

would be a structure of that kind of a network right.  So what this means is that I have 

inputs let us say x1, x2 and all the way up to let us  say xn okay so this is my input right that 

goes to my network and I have this one hidden  layer okay according to UAT of course we 

are still at the UAT point we are not looking  at a deep network in that sense but we are 

looking at a network right a neural network  that can achieve the you know task at hand and 

what you are saying is right we got let  us say right several of these of these neurons sitting 

here and each one of them is fully  connected right I mean that is the whole idea.  So each 

neuron will get all the past inputs from all the kind of right previous in this  case all the right 

inputs.  So if you look at the first neuron right it will get from here, it will also get from  here 

and then right all the way here and then each one will have a weight right.  So the weight is 

needed because sometimes right some of those inputs okay may not may  be totally 

irrelevant to the output right and see for example right you can kind of  right think of 

examples where let us say one of the inputs is not even right it does not  even matter as to 

what that value what value it takes with respect to the output right. 

 

  So the weighting is really for that so this network should figure out along the way as  to 

which ones really matter right for example you could have something like an output, output  

it could be the could be the right rating of let us say right a movie and then the input  could 

be actor, director whatever right and then it could be that could be the right one  of the one 

of those inputs could be simply right I mean you know rain or something right  weather I 

mean how does that matter right you know with respect to movie.  So these weighting is 

really happening so that you can actually so the network figures  out right which ones really 

matter for us to be able to get to the output that we want  and then the same thing would 

also happen to happen let us say with respect to the other  neurons right.  So you again have 

to do a connection from here, from here, from here and then the direction  of course I am 

not showing but it is obvious right it is a kind of it is called a feed  forward network right so 

you are kind of feeding forward all the information and then what  happens when you have 

let us say an output layer again output right does not have to  be a single value right.  So this 

f of x or this g of x for that matter it could also be you know a vector valued  function okay 

which is why I said I mean right I did not explicitly mention that but then  it can also be 

vector valued.  So really what you can have is something like this right so you have an 

output layer so  this is your input layer let us call this IPL let us call this HL right hidden 



layer  and let us call this the output layer okay and again the output layer so you see each  of 

these neurons here will get an input from all of the right previous you know previous  

output so which then means that this guy would connect to this, this guy would connect to  

this all the way, this guy would connect to this and then maybe right what will also happen  

is this guy will get input from all of them right and so on right. 

 

  And you can imagine that the right number of unknowns that you really have to solve  for 

can really blow up right rather fast.  For example I think of something like I mean if you 

have an input right which is let us  say of a certain size right I mean you know if you have let 

us say m right m cross 1 right  if that is the right I mean you know this one vector that is 

going in and let us say  I have got some n cross 1 neurons right n number of right neurons 

and where let us say  n is far greater than m typically right that would be the case and let us 

say my final  layer which is output layer let us say I got some like let us say right p cross 1.  

Then you can imagine that in going from the input layer to hl right I mean you know hidden  

layer you are already looking at how many weights, how many weights do you have there  

that you have to actually calculate that is m into n right m into n number of weights  and 

then the biases will be n number of n number of bias terms right because each neuron  will 

have a bias.  So from going from here to here right you are looking at m into n weights plus n 

number  of these biases right because each neuron you also have to find the theta right for  

each one of them theta 1, theta 2 whatever right or right up to theta n.  So you have that and 

then in going from here to here right you are looking at what is that  n into p number of 

weights right and plus biases for the output neurons which is like  p right. 

 

  So now given I mean if you have these numbers as large which is right typically the case  

right then you are looking at really learning that is why that is why when you kind of look  

at these deep networks right they end up you end up trying to solve for you know so many  

unknowns that is because I mean there is just so many weights out there right which you  

have to find out there is so many bias terms and and so on right and that is also the reason  

why let us say right when you when you when you handle images right this kind of an 

architecture  is no longer the best because an image typically is like 512 by 512 and and you 

know and actually  there is a spatial correlation and all therefore you know it is not a great 

idea to just stack  it up as one single vector right what is called a lexicographical ordering.  

So you can just it is unwrap an image and put it as one long vector but that is not  the way it 

is done because then you do not capture well you can expect the network to  capture all that 

but that is not the way it is done right and you want some locality and  all that that is why 

you have what is called a convolutional neural network right which  comes later.  Now this 

kind of right this this kind of an architecture right is called is called fully  connected FC right 

fully connected I mean there is also something called convolutional  fully convolutional 

networks.  So that is typically called FCN so one should not confuse that that and this so 

when I say  FC this means fully connected okay and yeah and here is your output by the way 

right y1  y2 all the way up to let us say yp sorry here yp okay.  Now yeah so number of 

weights and biases right is done now then then why then right one could  ask in fact right in 

the last class even after the class some people are asking then why  do you then do a deep 



network right so why do not you just solve the problem like this  right why do not you just 

have one sort of hidden layer and try to compute all those  weights and biases. 

 

  Now this is this sort of rate you know this is in a sense empirical and some of it is  also 

because of the way that right one needs to have some kind of you know attractability  right I 

mean attractability in the sense that when you train a network you should also know  right 

which way to head because it is never very clear as to you know how to kind of do  this and 

you also want some sort of an right explainability in the sense that we should  be able to 

associate things that are happening right inside the network to things that you  really want 

to happen.  See for example right I mean you know just as you know inside a human system 

we have  this idea that let us say right there are kind of right low level features right which  

we initially gather then maybe right they kind of then you know there is a pooling of  those 

features in order to arrive at a certain higher level of features then there is probably  

another level of you know some sort of a pooling that happens you know which kind of 

brings  those features together into a further whatever right whatever you mid level and 

then high  level and then then okay then there is then you get some interpretations.  Now 

similar to that right I mean here also we want so so right over the years what has  happened 

is right people have actually figured out that that something like that right helps  you 

actually achieve exactly the same task but at the same time right so the reasons  right I will 

just write down and most of them would be obvious but I think it is just good  to know so 

why we why we actually you know so instead of this what typically done what  is typically 

done is in an implementation right what you would typically do is the following  right so you 

will have you will have let us say X1 to Xn what is it Xm sorry okay so this  should be m.  So 

X1 to Xm okay is what you have and then what you have is typically a bunch of layers  right I 

mean sometimes these number of layers could go up to 50, 100 and so on it depends  on you 

know it can it can beyond a point that it can be you know intractable also but yeah  but then 

typically right after a certain number of layers you may not even find any advantage  but it 

is interesting that you know I mean I was in a I was in a talk right that one  of the CVPRs and 

there was this guy who works in actually brains then he was I was asked  to give a give an 

invited talk right and he said that you know that actually none of these  architectures really 

mimics what the brain does okay.  So even though we tend to think that you know this is 

like the human visual system and all  but he says human visual system does not do a back 

propagation and all that and when the  way we solve let me see one thing is that you can 

actually have an architecture that  you think is more you know is more is more is tractable 

is more is a kind of convenient  thing to handle but at the same time it should also know 

how to train it and so on right. 

 

  Now people have figured out how to how to train it and so on but then he says that that  is 

not the way and nobody knows okay by the way he himself does not know how the but then  

he is sure knows for sure that this is not the way right things work inside our own system  

may be true right because very unlikely that that right we would do something like this  but 

anyway right you know given that whatever has happened has happened right in this 

manner  one can write or some of you might still want to think about you know this is the 



best way  to do it right I mean nobody is saying that this is the way to solve this problem but  

this is the way it has been solved right along the way and I think we are just trying to  trying 

to sort of write interpret what has been done right we are not trying to say that  right this is 

the best way to do things.  So what is done is right so you have 1 layer, 2 layer okay I already 

wrote down right so  you got multiple layers and then comes your output layer right what is 

that y12, y2 up  to yp right now so the idea is that right I mean you know you might want to 

sort of  write you know come up and so that is the way this is done and because of this 

because  right anything more than 3 or 4 layers you would call it deep okay and deep 

network right  so really that is what we mean by a deep network and this does exactly the 

same thing right  same task that you want in the sense that irrespective of you know you 

can think of  the problem that you are trying to solve itself could be a regression problem 

for example  right you are going from an image to an image or something like that or it 

could also be  like you know you are doing a classification problem where let us say right 

given an input  image you want to say right to what class right you know that that from 

what class that  image comes whatever be it right.  Effectively the deep network is trying to 

solve right I mean either a regression problem  or a classification problem right these are 

the 2 main problems that let us say right  you know people deal with and yeah and the 

reason right for actually for sort of going  from sort of transitioning from here to this is for 

the following reasons right I am just  going to write down okay so I will just write down so it 

gives a compositional feature abstraction  compositional feature abstraction feature 

abstraction right which basically means that  you know see for example I mean if I call this 

as let us say right I mean something  that is actually emulating some F1 sort of a 

functionality and then let us say this is  the second guy F2 and then so on right.  Now what 

really is happening suppose I call the input as some vector X right then what  is happening is 

after the first layer right you have let us say F1 of X right and then  F1 of X becomes the 

input for F2 and therefore F2 acts on is F1 of X right then you might  have an F3 that is 

acting on F2 of F1 of X right so you got like F3 acting on F2 acting  on right F1 acting on X 

right.  So you have this kind of a compositional abstraction right which is actually going on 

and the idea  is that this compositionality is somewhat mimicking a human system in the 

sense that  like I said right like I have said several times earlier also that this sort of gives  

you a you know mimics the behavior of a human system but again to a certain point okay 

and  you know each one tries to figure it out in their own ways you know which architecture  

works the best for a particular problem okay. 

 

  But I am saying this is just a you know general what you call right a general sense for how  

these things work okay so compositional feature abstraction is this one just as in the human  

visual system as in HVS which is human visual system human visual system.  Then okay 

now UAT itself right does not UAT itself right limits itself okay you know so  right I mean 

itself does not does not say how easy it is to learn right does not say  how easy it is to learn 

this is representation or learn the mapping right.  It just says that well you can do it right 

but then it does not say whether I doing it  with just one sort of hidden layer is that the best 

way to achieve it or you know should  we have multiple number of layers right effectively 

achieving the same thing but then right which  one is easy to learn is not clear right then you 



know it does not even say right you know  write anything about that and the fact is that 

people have found that you know solving  this there are there are say efficient ways of 

actually doing it okay.  And or right it also it also right has I mean and then it does not say 

does not say how  many how many neurons are needed does not say how many neurons are 

needed right.  It only says that representation is possible representation of any g of x you 

can apply  approximated by some may say f of x as close as possible right does not say how 

many neurons  you need for a further task how many neurons you need. 

 

  And by the way right so this output layer that you have okay does not always mean that  

you need a non-linear activation there right but all this non-linear activation is all  about 

this okay in fact what to say and even in the earlier example right where I think  we did 

watch some or something we did right so even there I chose an activation that the  output 

right but then you can show that right it is not even okay you do not really need  that okay.  

So I mean you can have other ways of doing it also so and the other thing is right depending  

upon whether you are solving a classification problem or you know whether you are solving  

a regression problem right this output layer could have an activation function could turn  

out to be totally linear and so on right because again I mean you need a bunch of values that  

that that you want to work with right it does not have to be a probability right all the  time 

okay.  So, so therefore what you have in the output layer is activation depends but all of this  

this hidden layer thing right so the activation is all is all for that okay it does not explicitly  

say that you need something at the output you need a non-linear activations there then  

yeah each of y1 to y2 can take only 2 values right.  Each of y1 to y2 can only take 2 values no 

no it is not like that right depends upon  what kind of an activation function you have see for 

example if you have a step activation  right like the one okay which we had then of course 

okay then you have some like either  it can take a 0 or 1 it just fires that way but if you had 

something like a like a let  us say sigmoid right it does not have to be yeah it can take it can 

take you know it is  a real values in fact if you have if you have relu right it can take it does 

not have to  be limited to anything between 0 and 1 right I mean you know relu right would 

look like  that I mean so it is totally linear after 0 so it can take any value.  So that is why I 

am saying we are not limiting ourselves to what is happening in y right  what you put in y 

depends upon what task you want to solve okay. 

 

  Then there is one more thing right that you want to say abstraction then layered 

representation  of features so from simple to complex right so you can also so this 

compositional feature  is one aspect of it and then you know you can also think of it as some 

kind of a layered  representation right layered in the sense that okay layered in the sense 

that right  you typically believe that these features will go from being simple to complex 

okay  so that is simple to complex right.  So that means initial layers would be kind of would 

be learning some simple features  and then as you go further right down there down the 

network right I mean what is being  found is that you know typically that is where the 

complex features you know end up being  and that is also the way our own our own kind of 

visual system works so it is like saying  taking simple things which can easily identify and 

then and then right and then you know  try to try to then you know go for more complex 



features.  And what is also been and then the other thing is right explainability okay 

explainability  because that is kind of very very important right because if you just do 

something right  and then you are not able to explain why it works right it is not good right I 

mean it  is not enough if you simply show that and I am able to meet my target right I have 

built  a network which can solve the problem but then you have no insights into why that is  

going on that is why you have what is what are called these ablation studies and all  right I 

mean you know so right somebody wants to know what happens if this is not there  what 

happens if that term is not there what happens if this layer is not there right if  you remove 

it why do you really need it there and so on.  So therefore this explainability right is again is 

again is again very very important  I mean otherwise you just are just solving something like 

a black box right and therefore  explainability matters and then the other thing right that 

that is more of an empirical  evidence is that you in fact end up using fewer neurons than a 

single layer okay need  I mean this is again okay this is all empirical empirical evidence right 

I mean again you  know if you want I mean you should probably go and further read about 

these things but  but what has been typically found is you need fewer neurons as compared 

to a single layer  okay.  So instead of having just one sort of hidden layer what has been 

found is in fact you end  up end up using fewer number of neurons okay if you have a if you 

have a deeper network  so this is again empirical evidence okay this is not this is not any 

there is no kind of  a theoretical guarantee or anything just an empirical empirical evidence 

okay yeah. 

 

  So right which is the reason why when you see these networks right they actually end  up 

being what they are okay like deep networks.  Now the 2 main tasks right which one looks 

at is what is called a regression task and  what is called a classification task okay.  The 

regression examples are many for example you know okay now let me just it does not  have 

to be just straight image based even though this course is about images and so  on so 

regression one example of image could be like I have an image which is let us say  noisy 

right and I want an image right which is actually clean I want an image to come  out that I 

want a network which should take this and then right sort of suppress the noise  and then it 

give me you cannot say remove the noise right that is not a good thing to  say because you 

can never remove noise but you can maybe suppress the noise right and  you know get out 

an image which looks far more clean that is like that is like a regression  problem and 

similarly you can have several examples but even in 1D right I mean if you  want to talk 

about because right now we are still you know talk and okay one more thing  right that I 

that right before I forget to say right.  So such a thing is called an MLP which is a which is a 

what is it called MLP?  Multi?  Multi Layer Perceptron.  Multi Layer Perceptron right MLP 

Multi Layer Perceptron. 

 

  So you so you have all heard about this, this is called an MLP right multi layer right it  is 

like right multiple layers of a network right so you called a multi layer sort of  a perceptron 

and when you talk about convolutional neural networks they are called CNNs and so  on 

right so those are those do not have this kind of right this kind of fully connected  sort of you 



know behavior okay.  So from now on whenever we say MLP this is what we mean okay.  So 

the idea is that right let me just go back to. 


