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  We are at a descriptor sift, we are talking about how to arrive at a descriptor of sift.  I 

think I just started talking about it during the last class. So, I said that this is a  128 

dimensional vector and it involves a bunch of steps. It is a  first of all so around the interest 

point at which we have already seen how to arrive  at the interest point and there is a 

definite, you know, dominant orientation.  So around interest point a 16 cross 16 grid is 

chosen. Now this grid, okay, that does  not mean it is, you know, so the grid size itself 

whether it involves 16 cross 16 number  of the pixels or whether it involves more number 

of pixels depends on the scale. 

 

 Okay,  now this is somewhat like a, like a kind of, you know, hyper parameter. Okay. So 

it is  not very clear, I mean nowhere do they tell us to what should be the scale.  I mean, 

right, so the only thing that we know is if you go up the scale then this area will  also 

increase. 

 

 Okay. So maybe you can just, you can just kind of make it a function of  σ. Right. The 

simplest thing that you can do is multiply it with actually, with  the kind of value of σ that 

you have. Because I have tried, you know, looking for  this but that specific information 

that even in the octave or the open CV implementation  nobody tells you exactly what is 

that, what is that, even the original paper does not  say, it just says, you know, keep it as a 

function of the scale. 

 

 Okay.  I think, you know, it does not probably, it is not very sensitive to that. A 16 cross  

16 grid is chosen. So grid, okay, this is not like pixels. And the gradient norm and  

orientation, this you know, the gradient norm and orientation are found for each of the  

pixels, within that grid found for each of the pixels. 

 

  Okay. Then there is a Gaussian weighting that is done, okay, on this norm because 

something  that is far away, because this grid can be really, can also be big, right, because 

it  kind of, you know, changes with the scale. By which I mean that the extreme point at  

whatever scale you found, okay. So by the 16 cross 16 grid we mean that at that scale,  

right, at that scale it could be a large region or found for each of the pixels.  And okay, I 

think I probably already said last time to achieve rotation invariance,  okay for rotation 



invariance, you kind of recompute the angles with respect to the dominant  orientation, 

with respect to, which is the orientation of the, you know, key point, with  respect to the 

dominant orientation of the key point. 

 

  Then you do some kind of Gaussian weighting now. So the norm of the gradient is actually  

Gaussian weighted now, the norm of the gradient. So what this means is that depending 

upon  how far away you are from the key point, you sort of reduce the, reduce the, what do 

you  call the, no this one, the weight or the value of the norm, the norm of the gradient is,  

or the strength of the norm, of the gradient of the norm, norm of the gradient.  To achieve 

rotate their angles, the norm of the gradient is Gaussian weighted, Gaussian  weighted, 

again right I think there is, this one is something like 1.5 σ is what they  say, okay, this is 

again a hyper parameter. 

 

 So if you are at that scale right, then you  take a Gaussian weighting of 1.5 σ. Again I am 

not going to write it down because these  are all I think in a different implementation claim, 

different thing, somebody will say  2.5 σ, they say Gaussian weighted by the, and again 

okay this weighting depends on the  scale, depending on the scale, well not exactly right 

because it is like 1.5 σ right,  so it is not, so let me write this as, I will just write 

approximately 1. 

 

5 σ, this one,  this grid is dependent on the scale.  This is dependent in the sense that it is 

already like 1.5 σ right, so this one  is what is dependent on the scale. This Gaussian 

weighted by the distance of pixel to the shift  point. See that is also the reason, this is also 

the reason why for example right, you  know generally if you implement a vision code 

right, seldom will you find that you can take  something off the shelf and use it. 

 

  I do not know how many of you have tried it out, this is also the reason why you know,  

why it took a long time in order to make these things really robust and all. It is all these  

you know, even though the theory may look good but in a practical implementation right,  

when you actually use it, when you cannot directly use, you know directly take it from  a 

MATLAB code and start using whatever images you have, you always invariably have to 

tweak  something.  Yeah, this is always been an issue, this is unlike your you know a 

communication or something  right where you know things are kind of well laid out right. 

So that is always been an  issue but now with these deep networks and all the robustness is 

gone up like you know  multi fold but this traditional methods right, there is always been 

you know somewhat, somewhat  of a you know somewhat of an issue you know, a ticklish 

issue, it is not something very  serious but yes, but these things matter because if you think 

that you know I can just take  an image of this room and then I take another view point, I 

can automatically match, I can  run you know shift. Now very likely that simple is yeah, 

simple problems that you can solve  but in the moment right the problems become more 



complex you know it is normally not true  that you can take something off the shelf and 

use them. 

 

  So you will invariably have to tweak something. The 16 is then divided, the 16 cross 16 

grid  is divided into 4 by 4 cross 4 blocks into 4 cross 4 non-overlapping blocks, non-

overlapping  blocks. So it is like saying that you have a 16 cross 16 grid, so you do it like 

4 cross  4 right, non-overlapping blocks divide them and then an 8 bin histogram, by the 

way this  orientation based histogram that we are creating right, this is itself is actually you 

know  in the next class when I talk about HOG okay that is actually based on this kind of 

an  idea only.  So then 8 bin orientation histogram, orientation histogram quantized at 45 

degrees again that  is what I am saying right, so these are all things that you may have to 

tweak okay but  of course the fundamental sort of a descriptor is this, is computed for each 

4 by 4 block  okay. So then what this actually means is that you have already weighted the 

norm and  all right, so for example if you are at the center then something far away from 

the center  it is this one, the gradient strength has already been sort of weighted down and 

now  we are right within kind of each of these blocks now we are actually creating these  

orientation bins which is the same array that we said. 

 

  So for example you know so 45 degrees means you will have, we will have kind of say 

how  many bins you will have, 8 bins right, so you have an 8 bin histogram and then right  

now you start to sort of see right which, so wherever if some sort of you know a pixel  has 

a you know for a certain orientation it has a certain gradient norm, you actually  put that 

into that bin and then you add up right, so that you get again you know sort  of you know 

8 bin orientation histogram for each and there are of course you know 16 such  blocks right, 

it is computed for each block, for each 4 cross 4 block, for each block.  So and since there 

are 16 such blocks and this ordering at all is important okay, the  way you order for example 

see what you do is you do simply you know this one a concatenation,  so for example you 

have an 8 bin orientation histogram right, let us say for this you have  an 8 bin, for this 

right you have an 8 bin histogram right, then when you actually concatenate  them you got 

16 of these right, so you know concatenate them into one, that is what I  mean by 128 

dimensional vector right, so you have to concatenate them.  So when you concatenate you 

concatenate the same way right every time okay, that is how  you cannot just change the 

order, so since where is that, so this we get okay since there  are 16 blocks you get you 

know 128 dimensional feature vector or a descriptor in this case  one dimensional shift this 

one a descriptor.  So what this means is that right this is able to extract information in and 

around that  feature point that actually explains that region okay, explains that region in a 

manner  that for example when you match right, so the whole idea is that if you directly try  

to match intensities right it would not simply work okay right, that is the whole idea behind  

going after features and all right, if you have just 2 images you cannot simply take  the 

image intensities and start matching right, so features are far more robust because you  are 



kind of extracting a lot of things that you believe makes for you know gives room  for 

invariance for a lot of things.  It is a 128 dimensional descriptor which is the okay, now 

and then of course this is further  normalized to you know to actually unit length, this 

further normalized right, prior to normalization  clearly I mean you know that there is 

rotational invariance because of this right, because  of the rotation where you kind of 

recompute the angles right with respect to the dominant  orientation. 

 

  Therefore, rotational invariance you can see is already inbuilt to the you know into a  

descriptor, the other thing is scale invariance we know is already coming because of the 

way  you actually solve for shift itself right, solve for the features and therefore right  and 

therefore I mean so you can see that you know the fundamental things that you want  out 

of this in terms of the invariance for the geometric invariance right, it already  satisfies 

things that you would want it to satisfy.  In addition for the photometric part right this is 

further normalized, of course translation  variance is obvious right.  So this is further 

normalized for photometric variations or intensity variations okay, this  further normalized 

to unit length for photometric variation, so it is like saying that you know  if you had a 

contrast increase right for example if you had like you know A times I, of course  you know 

if you had an addition that is that anywhere it takes care of because you are  doing a 

Laplacian which is like dog which is like a derivative, so any addition is okay  you can 

handle no problem but if it is a contrast increase right let us say you have some like  you 

know multiplication of A right then the idea is that right I mean because you have  gradient 

will also get scaled by that factor if you simply normalize it outright then it  should not 

matter when you actually match.  But this is only if there is the illumination sort of 

uniformly going up right, for non-uniform  illumination which you can have for example 

non-uniform by which you mean that suppose  I take this image right so whatever is falling 

on this side is very bright right and then  that side is not so bright, so you have a local sort 

of illumination which is very high,  so in such cases right this cannot completely handle it 

but then what they do is you know  they normally they sort of you know put a cap on how 

much you know for example after  you are free you normalize right so you have this 128 

dimensional vector right, so which  you have kind of say right you know which you have 

done a normalization, now which means  that if you sum up all these values right it will be 

equal to 1.  So what they do is you know the maximum that they allow is actually 0. 

 

2, this is again  an implementation thing, so the value right cannot kind of say exceed 0.2, 

if something  exceeds 0.2 then it is frozen to 0.2 you do not allow it to go beyond that 

simply because  it could be happening because of some you see non-illumination variations 

and then of  course you will have to say renormalize that you know how to do right I mean 

it is like  saying that you freeze everything and then you add up all the quantities right and 

then  you simply scale every number by that sum, so that the sum again sums to 1 but now 

you  have you have sort of capped the capped you know you can just say contrast 



sensitivity.  It is all this is more like empirical okay, this is not like this is not a strict you  

know strict theoretical result that if you do this then you can because non-illumination  

variation itself can be of different types you know there could be specularity and also  it is 

not a claim any of that, these are all things that they found out right you know  works in 

practice and the you know interesting thing is even though even though right strictly  

speaking this is a you know sort of this is not even meant to handle affine transformations  

right but in reality right people have found that this works extremely well I mean under  

many many conditions okay in fact you should do this just take right go outside wherever  

you know hostel or wherever inside the campus wherever you are take your cell phone take  

let us say right 2 images of a scene today you take 1 tomorrow again when you go back  I 

take another image do not take from the same view point try to see right I mean how  many 

matches you get and take any shift you know off the shelf code and run it. 

 

  Of course you know see that there were further you know in further improvements over 

the  basic sifter say even something called an affine sifter and all that is basically tailored  

to handle you know affine variations and all we do not we do not actually go into that  in 

this course but the point is even the basic sifter you will be surprised even you should  even 

try something like you know day and evening you know even try that right take something  

that is like bright you know in the morning and then come back in the evening 6 o'clock  

take do not take a very dark or something but maybe right you know this one a dusk time  

right you take and then you should again run and see right you will be actually surprised  

that it works so well and it is very fast the implementation and all right and the and  and 

you know that slide that does not have very good examples but I think you should  try it 

yourself why should you have to accept right what I show here right why do not because  

these are things that you can try yourself right it is very easy to you are not implementing  

it anyway you are just taking an off the shelf code running it on images just to see whether  

the comparisons are good whether the matching is good sometimes you would not be able 

to  match but then this would have matched it well.  I think I showed a Mars image 

remember but it was very difficult for us to tell that  there is a match okay so much for 

SIFT okay let us go to the next one which is called  SURF right this was that was 2004 

right so this is I think 2006 this is actually came  as an came as an improvement to SIFT 

this came as an improvement over SIFT basically  many of the ideas are borrowed from 

there the authors are not it is actually a different  different these are different authors so 

this guy is some Herbert Bay and Laquan Goul is  so this group is very good okay this is 

headed by this chap so 2006 okay.  So what does SURF stand for it stands for it is speeded 

up robust features okay and  the main idea is to speed up things okay I mean even if it 

comes at some at some cost  of at the cost of making some approximations okay and then 

it actually runs very very very  similar to SIFT but then but the idea right that they have 

used is actually very nice  and it is very interesting right how they actually how they solve 

this problem so we  will see okay so improvement so basically you know it is as an efficient 



alternative  to SIFT.  In fact right this implementation also is available okay if you can even 

try this in  addition to SIFT but of course you know you would not notice the speed 

difference if you  if you should not alternative to SIFT so the main thing is right instead of 

trying to rely  on a Gaussian function I mean I told you right I mean I think in one of the 

classes I told  you why let us say a Gaussian has been the ideal pick for let us say several 

reasons  one is of course on all the math that showed you know how we can pick you know 

from a log  the extreme and all that but in addition to that I also said right I would say scale 

up  the lower features will start to go away only the coarser features remain no artifacts get  

introduced actually I mean if you really read about it right the actual theory says that  for a 

lot of 1D right this has been proven but for 2D it does not look like right there  is so much 

of you know sort of theoretical support people just believe that whatever  is happening in 

1D should also most likely happen in 2D.  So the argument that these authors make is that 

you know because of the fact that right  it is not yet completely proven that you know that 

a Gaussian for a 2D case is still the  best so go ahead and approximate they say okay fine 

right let me do something else and  the process right it is not like a bad approximation but 

it is a very smart approximation and they  actually show that right if you were to solve it 

using what are called box filters. 

 

  So box filters the idea is to use box filters as approximations to the Gaussian derivatives  

right.  Now you may wonder so box filter is typically like what I mean on all 1s so 

something like  this I mean typically read by box you mean that it is a kind of you know a 

contiguous  a contiguous array of numbers right so you can have something like what this 

is like  4 cross 4 and so you may have like 1 by 16 all 1s right this is actually a box filter  

and you might wonder right I mean you know why such a thing makes even why does it 

even  make sense right that you have something like this you know which seems like a big 

deviation  from a Gaussian.  But this actually goes back even more interestingly this goes 

back to an earlier work in 2001  I think there is another paper I do not know how many of 

you have heard about the Viola  Jones phase detector right so this is one guy so there is 

something called a Viola Jones  phase detector okay now this now this they so they had a 

paper in 2001 where they actually  talked about something called an integral image.  So 

these actually so these people actually know so this so this group borrowed that idea  and 

they actually showed you know and then they started from there in order to show various  

instincts. 


