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  Scale invariant, so you can see that there are there are a bunch of them in terms of  
the half, then we saw blob detection, then we saw corner detection, we saw edge 
detection.  So, we are looking at something like scale invariant feature transform, again 
the goal  is the same.  Goal is again the same that we want to be able to match features 
across images and then  you know based upon the draw some inferences, right, either 
about the geometry or about  the about the mutual you know transformations between 
the images and so on.  So, this is a very kind of popular among the among the ones 
right that the ones that exist  and this is the most popular / the way and this is this is 
due to David Loewe and it  came as a conference paper in 99 and then came in in a 
journalist in 2004.  And of course, again draws a lot you know heavily from what we 
have seen till now into  the log right what we saw in the last class right.  So, draws 
heavily from what log can do, but then but then right this this person he proposes  a 
bunch of things along the way some of which are intuitive and some of which may 
not be  that intuitive also, but yeah the point is it works right and it is not like deep 
learning  okay. 
 
  It works because I know there is a lot of you know kind of a systematic thinking that  
is gone into it.  I mean sometimes right some things they assume which I think we just 
have to we just had  accept right.  I mean there is just that is just a compromise between 
computation and accuracy and so on.  Okay now the first thing right that I wanted 
that we want to do is the difference of Gaussian  which is dog right this I think at some 
point of time I had said that right this is something  that will come up again a difference 
of Gaussians. 
 
  So, we want to sort of you know establish a relation between difference of Gaussians  
and the scale normalized log scale normalized log.  The scale normal log of course right 
we know what it is and it turns out that you know  actually you can you can of course 



the advantages of that dog is far more easier to implement  just request to Gaussians 
with different σs lot more easy to implement than actually log  then that turns out that 
there is actually a good.  So there is an approximation there, but still then in practice it 
works very well okay and  we will see what that is.  So in order to do that let us first 
look at what is this the first thing which is let  us say g of x we will take a Gaussian you 
know 1d again okay and then we will I mean  whatever happens here happens there 
in 2d - of x square / 2 σ square.  Okay now let us first look at  ∂  g / 𝜕 x okay in 

this case okay let us say  ∂  g  /  ∂  x which turns out to be 1 / √ 2 

π σ into e raised to power - x square  / 2 σ square because it is 

with respect to x we will have get - 2x then maybe  1 / 2 σ square. 

 

  So this we can write as - what is it 2, 2 will cancel off and then 

- 1 / √  2 𝜋 σ cube x into e raised to power - x square / 2 σ square okay I do not think  
we need this bracket - 6 okay.  Then let us look at second derivative so this is - 1 / √ 2 
π σ cube x into  e raised to - x square / 2 σ square into - 2x 1 / 2 σ square + e raised  to 
- x square / 2 σ square and something that I had said last time right I think if  you are 
if you are attentive enough right you will see that something that I had asked  you to 
prove comes out of this / the way I would not tell what it is but I leave it  to you to 
figure that out.  So then you get - 1 / √ 2 π σ cube and let us pull out this e raised to  
power - x square / 2 σ square and then we will get 1 - what is this x square  this 2 and 
2 will cancel right x square / σ square.  Now let us kind of look at this one right so till 
now we have not examined what is  ∂   g /  ∂  σ see till now whatever this one derivative 
we have taken right we have  always taken with respect to x or y right.  Suppose we 
examine this Gaussian with respect to σ okay then what will you get you will  get 1 / 
√ 2 π and then you have like what is this 1 / σ into e raised to power  - x square / 2 𝜎 
square. 
 
  Now what will it be - x square / 2 and then what is this - 2 / σ cube -  2 / σ cube  and 
then what is this + we need this e raised to power - x square / 2 σ  square into - 1 / σ 
square right.  This is  ∂  g / this guy right this equation 1 if you try to write find it is a 
derivative  with respect to σ - x square / 2 - 2 / σ cube + e raised to -  σ - 1 / σ okay.  
Now and if you do 1 / √ 2 π let us just simplify this okay e raised to power let us  first 
pull this out just to clear the mess then what happens 2 and 2 will cancel we get  x 
square / σ power 3 right x square / σ cube σ 4 σ power 4 in fact and  then we get - 1 



/ σ square or if I pull out - then I get - 1 / √  2 π and then I can pull 1 σ square extra 
because this guy also has σ square and  then e raised to power - x square / 2 σ square 
and then you will get 1 -  x square / σ square which is confirm that everything is going 
on okay.  So, you get - 1 / √ 2 π σ square 1 - x square / σ square yeah okay.  Now it 
is interesting right if you compare let us say they call this expression number  2 and 
call this expression number 3 then you see that the second derivative right  ∂  square  
g x /  ∂  x square if you see that almost has a similar form right except that except  that 
you need a unit a σ right. 
 
 So, you need a σ to multiply  ∂  square g x /   ∂  x square right. So, you can write  ∂  
square g x /  ∂  x square is equal to this  guy  ∂  g /  ∂  σ right where here it is a function 
of σ. So, this actually  called the heat equation or something where this is nothing to 
do with image processing  okay but anyway turns out that this is also useful for us 
okay.  Now what you can do is now here is where a certain amount of approximation 
goes and till  now it is okay right. Now what I do is and also this  ∂  g σ /  ∂  σ okay. 
 
 So,  so what you have is σ  ∂  square g /  ∂  x square. In fact there from now on it  I 
am going to simply write this as you know this one del square f which is a which is  a 
Laplacian the same thing will will hold good okay  ∂  square f that is also the reason  
why I said that you know see a Laplacian will be will then involve an x square + y 
square  / c / σ square right and which will also come here if you do this with respect  
to σ. So, the 2D is just straight forward then this  right. So, the way right this is written 
is you write this is your g of σ not  ∂   g /  ∂  σ. So, this you write as g of x , y , k σ - 
g of x ,  y , σ / k σ - σ limit what do you think k attending to 1 right. 
 
  This is what it will it will be actually or in other words right you can actually transfer  
the σ on to the left and you will get σ square 𝛿 square f is equal to limit  k attending 
to 1 g of x , y , k σ - g of x , y , σ / k -  1. Now it turns out that see on the I mean on  
the left is your scale normalized log right this is what we saw last time this is what  
gives you a scale normalized log and we saw what is the use of that right. I mean it it  
allows you to catch the extreme and all very well right without without going to 
damπng  the damπng the magnitude of the strength. On the right hand side right 
now this what  what basically people have found is that this right they directly 
approximate it as g of.  So, so what they do is so this they directly approximate as simply 



a dog which is a difference  of Gaussian and k strictly speaking where k should be very 
close to 1 for this for this  equality to be kind of meaningful. 
 
 But in reality what is found is the range  if approximately equal to simply you know 
a difference of Gaussian which means that  you can simply say g of x x y x , y , k σ - g 
of x , y , σ and  it is approximately equal to a difference of Gaussian which is what is 
what dog is right.  You just take one Gaussian subtract it from the other for for a 
reasonable range of values  of k. Now this is where the this is where you know this is 
kind of empirical.  You know strictly speaking that is what should hold, but in practice 
it turns out that k  all the way. So, a tyπcal value of k that people use is value of k is 
actually is actually  k is equal to √ 2, which is like 1 point what is that 4 or something 
right. 
 
 Now strictly  speaking there should be 1, but but it holds very well. In fact, you can 
plot this and  see yourself ok. I mean I would encourage you to to plot this for different 
values of  k and compare with a log on the left. Turns out that you know it is in fact, 
people  go all the way up to 1.6 and all and this is a range of values where it works very 
well  ok. 
 
 And this was known ok, this was this was known this is not related to the paper really.  
This is not like you know lower founded or something whether this was known, but 
then  what he did was he exploited this this you know in a very nice way.  So, last time 
right when we saw log right we had sort of a scale space right where he  said that you 
know we will convolve with with right different σs. And and then it depending  upon 
whether the structure is coarse or fine right for smaller σs the finer  structures right 
will will will fire. And then for coarser σs right the the  whatever the the coarser 
structures right will fire for larger σ right. 
 
  Now what he did was the following right. So, because computationally rate I mean 
after  all right all this had to be done in a very fast manner right. For example, open c 
will  have a shift implementation that can be run in in you know in one hundredth of 
a second  or something like milliseconds in fact. And all that is happening because of 
these approximations  and all that have been made and to show that right it still remains 
reasonably robust and  so on. And and the way right he does this is as follow  I mean 



he does a bunch of things right I will go through one / one. 
 
 So, first thing right  that he actually does is that that he builds up what is called what 
is called you know  a dark scale, a dark scale space right instead of a log instead of the 
instead of in the  log domain. So, then what would you do and of course he  chooses 
k equal to √ 2. So, what that means is the first one image right that you have  is actually 
blurred with σ ok. And then the next one because you want this approximation  will 
be actually k σ. And then the next one will be actually k square σ. 
 
 Then  you have k cube σ and then let us say k power 4 σ. I mean like this again how  
many how many measures should you this is called an octave I mean I will tell you 
what  that octave mean, but for the time being let us keep that aside.  But let us say 
right if you did not have a you know a pyramid or something and you simply  wanted 
to search through all σs right at a sort of at a what you call you know  at a at a particular 
this one spatial spatial resolution right a spatial resolution that  is which is the highest 
kind of resolution that you have which is the image size right.  It is all at the image size 
/ the way right. So, when I say I apply σ that means that  I take the image which is 
apply at that at that spatial resolution. 
 
 So, it is like the  highest resolution right that is what you have an image is captured at 
whatever highest  resolution you have. When you have a pyramid you will down 
sample it right, but here as  of now there is no down sampling these are just you know 
the same image taken and then  blurred successively. And what would you next what 
would you do  next I mean the obvious thing to do would be to actually catch the 
extrema right because  after all that is what you want to know I mean right. So, the 
course structures and  the finer structures you want to be you want to catch them. So, 
then what would you do  you would take these two because now is where they where 
the dog comes into play because  you are no longer using a log right you want to 
approximate it using a difference of Gaussian. 
 
  So, what you will do is you will actually subtract these two right that is what that  is 
what we said here right. And you will subtract these two and let us say let us call this  
is dog 1 and then you will take these two subtract them you will get dog 2. And then  
you can take these three these two you can get dog 3. In fact, in his paper it he goes  



up to dog 4 ok. / the time / the time that you are a dog 4 how much is your σ up  / 
now? 4th σ right. 
 
 So, you are already here like here you are talking about if k  is √ 2 then you are you 
are looking at already like 4 σ there.  And here is where you got like k square. So, it is 
actually 2 σ here ok. And and each  of these being an approximation to the log at that 
scale right each of these is actually  approximation now now what can you do? Now 
what you can do is you know you can look at  let us say suppose I look at dog 2 right 
and I want to catch extrema now. So, what I can  do is just the same thing that what I 
said last time. 
 
 So, I can I can have I can look  down and up right and I and I πck something here I 
take a 3 cross 3 neighborhood I take  a 3 cross 3 neighborhood up the scale down the 
scale and in that scale right / scale  I mean in that σ ok. That is why it is called scale 
space scale  has to do with σ space has to do with the with the resolution of the image. 
So,  up the scale down the scale and at that scale you compare with how many 
neighbors? 26 right  26 neighbors 9 above 9 below and 8 around you. And then if you 
find that right you are  the you are the highest right in terms of strength again right. 
If you find that the  magnitude of the or the or the strength of your of the of this dog 
response right. 
 
  If the strength of the response we would not call it log response, but it is actually an  
approximation of the log response. But whatever is the dog response that you get if 
that strength  is the highest there then you would actually think of that as an extrema. 
So, it could  be a minima it could be a maxima right. Again like I said could have a 
blob that is that  is dark in the middle and white outside or could be white in the middle 
and dark outside  both are blobs for us right. And here the interpretation is not strictly  
in terms of a blob or something just that it you know the insπration is drawn from  
log, but nowhere it is he it is not about you know it is not specifically meant. 
 
 So,  for example, if you were to ask what is the key point then here right the interest 
point  that you are trying to find out. The interest point is whatever fires up right 
under this  scheme in a sense right. And yeah you can think of it as blob it is again not 
strictly  blob I mean it does it does fire you know whenever whenever there is an there 



is a reasonable  activity in this sense ok. But because we have seen log you can relate  
to that ok, but then it is not like it is a blob detector or something ok. And ok so  so 
what you can do so when you can compare with up and up and below. 
 
 So, you have got  right you know you got to compare with 26 neighbors ok. With 
this itself right you could  have been happy, but actually in this paper right he also takes 
up doc 3 ok. Just to be  sure that right if there is something right if you know if you 
you should not miss something.  So, he also compares that doc 3. So, doc 3 where doc 
4 and doc 2 and then and then he  finds the extremum, but that is an implementation 
issue right how many how many you how many  images you take here ok. 
 
 Now it does not end here ok this is of course,  on one way to see see how you can 
actually, but of course, we still have not talked about  I mean you know there is still a 
lot more ok to the sift than this I mean it is not  simply that you know that that that 
becomes the extremum. You want to declare something  as a key point right. So, the 
key point he actually declared that  defines a certain orientation for it which is a 
dominant orientation and I mean actually  it is a smart way of doing things right we 
will we will we will see them one / one,  but it is not over yet I mean this is just the 
extrema right how to find an extrema right  we are only yet you know we are only 
there as yet.  The other thing that he does is this this the kind of speed up. For example, 
right I  mean it is like you see if you had if you if you stay at the at the same spatial 
resolution  which is the highest resolution at which somebody is given you the image 
and you do this right. 
 
  So, what would you do suppose I wanted to I wanted to examine I mean it could 
have structures  right from small to large right. Now, if I wanted to go to the larger 
ones then I will  have to increase my σ right because that is when that is when that is 
when it will  actually match up with the with the underlying structure.  So, but then 
that means that you are actually operating at a spatial resolution that is  the highest and 
you still have to create you know many many σs for that and you have  to scan through 
it is almost like scanning through different different σs to find  out to kind of locate all 
the interesting structures in the image. And as I said right  you do not just just show 
the way you still deπct it is of course, if you know there  is a deπction which is even 
which is even more interesting.  But it is like saying that you know I found something 



interesting there at the center,  but then I still tell that at what scale I found it that is 
very important at what scale  right ok did I find it because when you match it right I 
mean these things could could still  be important and not only that you want to know 
whether that structure is a small one  or is it a big one what kind of structure did we 
identify. 
 
  Now, if you had to speed this up right what we do what would you do I mean if I if 
this  is time consuming then what would be the next thing that would occur to you 
based upon some  things that we that we can as we discussed you know of course, not 
not not in the immediate  past, but some somewhere sometime in one of the earlier 
lectures how would you speed up  convolution well convolutions are going on here I 
mean that and all we are anyway doing  right.  So, all that is there ok you will do 
convolve in one shot that that anything else that is  there anyway what else can we do.  
In fact, I said I dropped a hint in the beginning that is a pyramid right a pyramid.  So, 
what he goes for is actually a pyramid a Gaussian pyramid. 


