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 So again the idea is exactly the same, right.  This was whatever 

we did.  So how do we do this?  So let I will call X star, Y star be 

the actual locations, okay I think I have to write bigger,  be the 

actual locations corresponding to the maximum value, to the 

maximum value, okay.  And then let us do a Taylor series 

expansion.  Probably this course uses Taylor series the most I 

think, I do not know how many times  we use Taylor series in other 

courses to this extent.  I mean I do not know every other topic 

has Taylor series kicking in, right, about DC  detected but this is 

more like an application, right, both the detected corner point X 

c,  Y c. 

 

  So we have a corner detected X c, Y c and the actual corner we 

believe is at X star,  Y star, right.  So the corner response, okay 

let us actually write that down response function.  Suppose right 

we would express it as a kind of a continuous function and this is 

some  f of X star, Y star.  So suppose we say that X star let X star 

is equal to X c + let us say ∂ X and Y  star is equal to Y c + 𝜕 Y, 

okay. 

 

  That means in the neighborhood of X c, Y c.  So this we can say is 

the value at X c, Y c and then account for how far away you are  

from that point.  So ∂ X let us call this f X and this f is the corner 

response function by the way,  okay, f X of X c, I mean so this 

evaluated at f c, Y c, you know X c, Y c + ∂  Y f Y X c, Y c + some 

second order terms and so on which we can ignore.  Now what 

should we do next if you want to refine our estimates, our 

estimator X c, Y  c, you want to refine it.  So what do you think 

you will do?  f is that m. 



 

  But now I expressed in a sort of a continuous form.  So what shall 

we do?  If X star, Y star was actually the maximum then something 

should happen there, right.  So what is that?  If you compute a 

gradient there that should be 0, okay.  That is what we should 

obviously use.  So we should say f X, so if I take the gradient value 

at X star, well because that is the  maximum, you know, so its 

gradient should be 0. 

 

  So then this would be like f X of X c, Y c + ∂ X f X X of X c, Y c.  

And then similarly I also know that f Y should be 0 at X star, Y 

star.  So I can write this as f of f Y X c, Y c + ∂ Y f X Y X c, Y c.  

There is something that I think probably missed out one minute.  

Yeah, yeah, here right I missed out now f X, okay, this one that I 

missed out now f  X + ∂ X f X and then here also I mean this term I 

missed out, right. 

 

  So this should be, okay, so I think this should strictly be f Y X, 

right.  I mean if you want to exactly follow what we have there f 

Y X and this will be f X Y,  right.  This will be f X Y X c, Y c +, which 

one?  You know one minute, see f X, right, so that is this 

derivative + ∂ X f X X +  ∂ Y f X Y X c, Y c.  I mean it is actually δ 

by δ X, no, it is δ by δ X of this guy.  So it will be f X Y is like δ by 

δ X of actually δ by, so it is like δ square  f by 𝛿X δ Y. 
 
  No, no, what is the problem?  There is a problem here?  Down.  Down, no, yeah, 
yeah, no, no, yeah, down I am not, no, the first one okay.  Is that okay?  Okay, now 
next one is with respect to Y, right.  So we have f Y + f Y X + ∂ Y f Y Y, no.  Sir, ∂ Y 
f Y Y + ∂ X f Y. 
 
  Ah, okay, oh, this one you are saying, sorry, sorry, yeah, is that what you are referring  
to?  Okay.  I thought, I thought the problem was with respect to the derivative, okay.  
This is okay?  This is fine, right?  Or is there a problem?  No sir.  Okay, ∂ Y f Y Y X 
c, Y c, okay, but this we know to be 0, right.  This we know is 0, this we know is 0. 
 



  Therefore what would you, what would you do?  So ∂, so we just have to write ∂ X 
∂ Y in terms of, in a way to get a matrix  vector form and get ∂ X ∂ Y.  That is what 
we want, no?  We want to know where is that ∂ X ∂ Y.  Okay, so I think that I am 
just going to write down this matrix, okay, which you can verify  is okay.  F X X of 
X c, Y c, F X Y of X c, Y c and F Y X of X c, Y c, but most of the cases, right,  they 
will just assume F X Y to be equal to F Y X, F Y Y, X c, Y c and then into ∂  X ∂ Y 
that is the unknown to be equal to -, so this sign and all that we need  not worry 
because ∂ X could itself have been a negative quantity about ∂ X and  ∂ Y, but anyway 
if you write it in this form it comes out to be F X X c, Y c, F Y  X c, Y c.  So all these 
quantities are known. 
 
  Now but this, this how do I calculate?  I need, I need a second derivative right along 
X. Yeah, so we can use a kernel right, so  what kernel would you go for?  What would 
be the entries of that kernel?  Applause will give you sum, whereas I just need F X X 
right, so how will you do that?  We did that no?  1 - 2, - 2 1.  I mean that is how we 
got right?  Then along, see for X it was like 1 - 2 1, for Y it was 1 - 2 1, we added the  
board, we added board to get 1 1 1 1 - 4, now we are just using them individually  
right?  So what you will have is, it is actually a 1D kernel right, so 1 - 2 1, all 0s right  
elsewhere.  So this will give me F X X and for F Y Y right, I should use 1 - 2 1 and 
then 0s elsewhere.  And for this guy it will be 1 1 - 1 - 1 and then for this one right, 
which is, check  why is this so?  It should be easy for you to find out, this will be, this 
is what will give you F X F  X Y, this kernel. 
 
  Okay and then once you have this, then you have, then you have this matrix now 
right  and then you know this anyway, this is what you computed, I mean no, F X of 
course you  need a derivative.  So this is also then, for this you will need a, you will 
need a first order sort of a differencing  along X and this will be a first order 
differencing of the corner function along Y.  And then ∂ X ∂ Y is simply invert this, 
multiplied with this vector and that  will give you the ∂ X ∂ Y that you need to, that 
you need in order to know exactly,  exactly where the, where the corner is right, to 
what extent or how close you are to X C  Y C, is that okay?  At most be 1 in this case 
yes, yeah that is what I have, I mean my guess is that it will  automatically give a ∂ X 
∂ Y such that it cannot be greater than 1, that is  what I am thinking, but that occurred 
to me also.  I was just thinking we are not constraining ∂, that is what you are saying 



right,  we are not constraining it, but my, but my feeling is in the immediate neighbor, 
I mean  because of the fact that ∂ X ∂ Y are small, that is why we are ignoring all the  
higher order terms and all right, I mean in that expansion, so I am saying, I am thinking  
that probably this automatically comes that way.  This invariance right, the covariance 
and the invariance that we talked about the other  day, what were the 2 things we are 
worried about, one was photometry, another was geometry  right. 
 
  Now let us first, let us first kind of see, kind of you know worry about, worry about  
geometry.  Now is a corner, so let us first look at the simplest right, translation.  So is 
a corner covariant with respect to a translational operation, it is right, so corner  as a 
feature, yes, is actually covariant.  What about, what about the, what about the strength 
of the corner, that is actually invariant,  strength is invariant.  What about rotation, 
again corner feature will, will is actually covariant. 
 
  What about the, what about the strength?  Strength is not invariant.  Strength is not 
invariant, how many, how many people agree with that?  Let me, let me give you guys 
some, some time to think about that.  So what will happen I mean, so, so you, so you, 
so you have a, so the corner response  right, if you actually rotate, why would, why 
would your, why would your lambda 1 and  lambda 2, why would, I mean just, just 
the Eigen vector orientation would change right,  just the orientation would change, 
why would the strength change?  The feature is covariant, but why is the strength, 
strength, why is the strength not invariant?  2D, 2D in plane.  Lambda 1 and lambda 
2 will change.  No, Eigen vector directions will change. 
 
  Strength is invariant.  Check this out know, if you are, if you are still δbtful, take a, 
take a corner rotate.  What about scaling?  Scaling the entire image.  Scaling the entire 
image, like zoom in or zoom out right, something like zooming in  or zooming out, 
what will happen?  A corner is covariant. 
 
  Is not.  Why?  I am saying it is not even covariant, even the corner feature is not 
actually covariant  with scaling.  Why, why, why would you think that this, why, why 
is that with scaling we have a problem?  Because a, because a corner right, if you zoom 
in, how will a corner look like?  See.  It may look like an edge something like that.  
Exactly, see a corner like this, when looked at a certain scale, it looks very sharp.  



Suppose zoom in right, it will start to look like this okay, and, and then what will 
happen  is certain some of these things would get flagged as edges right, and, and this, 
and  this, and this, and this point itself right that you are trying to say declare as a 
corner  as you keep zooming in right, this is the in fact that they will look more and 
more  like edges. 
 
  Because see something like this right is going to, is going to look more like an edge 
and  not like a corner right.  So, so, so depending upon the scale of the zoom, I mean 
it is not like the, the, the  strength will remain invariant and then the corner will 
remain, corner feature will remain  covariant no.  Okay, so, so far as the scaling and 
scaling which basically means that you know anything  above that you know you can 
do a fine whatever you want to do right, which is like you know  involving you know 
scaling along different directions whatever you want to do.  Scaling and above, so the 
simplest things that you can hold against is a translation  and simply you know a 
rotation.  The moment you go beyond that right you do some scaling and all right 
then, then this,  then of course the even strength is also not invariant, the corner is 
itself. 
 
  So I think let me just remove this and say is not covariant okay rather than writing  
like it is not covariant.  Photometric what can we say?  Photometric so photometric let 
us say simple things what can it hold against?  Suppose I increase intensity globally can 
it sort of hold against it?  Why?  No, no that is right but then okay all of them but that 
is, that is like a verbal because,  because you are taking a gradient and gradient will 
knock off that DC you know okay that  has to be reason right.  I mean of course 
intuitively it looks like I mean everything goes up then it should not  matter but then 
that is true there is so, so if I have I xy + a right invariant.  That is I x and I y will be 
the same.  What happened?  I x and I y will be the same. 
 
  I x and no, no, no, no, no I mean the, I mean the image intensity not the gradient.  
Yes sir but that I x and I y value should be same.  I x and I y value.  They will be same.  
Yeah, yeah I x and no what do you mean by I x should be equal to I y?  No, no, no, 
no, no, I said that I x and I y values will remain same. 
 
  Yeah exactly no what is that?  What about, what about scaling?  Yeah it will be 



invariant but strength will be.  And strength will all but then it will all go up by a 
because the gradient right multiply  the gradient will also get scaled by a.  So really 
right nothing much will happen.  So in that sense right it can actually hold on against 
these two.  Other things right we will handle it. 
 
  We will scale that also by a no?  Done.  Okay now what about the feature part I see 
right this is only about finding the corners  right.  So we are only telling where the 
corners are but then we have to be able to match them.  So matching is not easy okay 
with respect to Harris.  It is not there is no systematic way right by which you can do 
matching but the thing  right typically that is done is you take a patch around the 
corner and you match. 
 
  So it is like saying that it is like saying that one image now you are now you are 
crossing  across two images now right.  Now assume that assume that you did a Harris 
corner kind of detector and you found a bunch  of corner points.  You did a Harris 
corner detector on the second image which is supposed to be of the same  scene okay 
but then taken from a different view point let us say and then you get again  a bunch 
of corners.  Now you want to be able to so for each one of them you know how to do 
all of this.  You have come you have arrived at all the corner point now you have to 
match right. 
 
  I mean that is how we said right if you want to do the stereo if you want to do object  
matching recognition panorama right everything requires a match.  So now so the 
point is that we need to be able to able to tell right that this point  is that this corner is 
that.  So one way to do it is one way that is recommended is you take a patch here and 
then you take  an image patch here and try to match them but then the but then there 
is something right  that can go wrong because it is a rotation and all then there is no 
point matching just  like that right.  So what is typically done is because you know 
that the because you know that the eigenvectors  are also rotated by a certain angle 
you know that angle right.  So what you do is you kind of de-rotate this patch which 
is I mean we are I mean let us  assume that it can be done right I have not talked about 
how you how you do geometry transformations  and images but it is not such a big 
deal. 
 



  So you can actually de-rotate the de-rotate the one of the patches right with respect  
to that theta angle and then you do a correlation and again this correlation and all is 
done  in a fairly sophisticated way what is called a normalized grayscale correlation and 
all  I mean the idea was not to kind of go into all that but just to and then some people  
in fact reduce use the corner use the ratio of the lambdas also to sort of to be more  sure 
I mean not just the cross correlation because you anyway anyway have the lambdas  
right and and as we said if it is if it is a pure rotation or something right then then  you 
know even the ratio of the eigenvalues or the eigenvalues themselves that you could  
also use them to be to be a little more sure but the key thing is actually patch matching  
in fact it is stereo right this is what is done right.  So this correlation is what is done 
right so you have a point here right one image and  then you have a second view but 
then in stereo right it is much more much more what you call  you know it is a it is a 
more it is a it is a I mean you know exactly where to look for  and along that row you 
can actually search right you can do a cross correlation to find  out but here right you 
are actually flagging automatically corners which are like which  are like stanδt points 
right which are which are already screaming for attention right  in a sense and therefore 
right and typically you know people reduce a search and all you  know people do it in 
a smart way they do not go around looking at all the corners right  just assume that 
probably this much is all that would have happened geometrically and  therefore 
around that region right you look for something and around that region there  can be 
only a two or three corners not like too many of them so you try to pick which  one 
of them is most likely correlate intensities right and then get a see the site and this  
normalized grayscale correlation you should typically do because you know one could 
have  a slightly higher intensity it could have been taken on a different day or a 
different  time so there could be illumination issues therefore one does what is called a 
normalized  grayscale correlation okay that is how you do and you know that is that is 
how you can  do a coronary detection okay.  Now corners are not the only points 
right which are actually interesting because anytime  that you look at an image right I 
mean what we call what we sort of read in a loosely  define as blobs okay so you know 
in an image that suppose I showed you a flower you know  so suppose I showed you 
a flower field which is a standard example which I think I will  also show you in the 
next class I showed you a field right containing flowers right and  then you can see 
that you know as you go back right the flowers kind of shrink in size but  then the 
ones in the front are kind of big in size and each one of them looks interesting  right.  



So you need so when you flag interest points so one is a corner is more like an interest  
point whereas blobs are more like more like see region points well yeah I mean instead  
of interest points they are called as region points I mean it may look a sound a little  
contradictory they are saying region on the one hand and you are saying point at the 
other  hand but that is the way it is okay so they are called like region points what it 
means  is within that region something interesting is going on okay.  Now how to 
how to see capture that and how to get of know declare things like that is  it because 
that is what in an image it is not like an image has corners all over the  place right so 
you cannot just it is it depend on corners alone and also the fact that Harris  corner and 
all has some inherent weaknesses so the idea was to actually idea is to come  up with 
something so there was a lot of work during that time in fact between the 90s and  the 
90s and 2000 a lot of work was going on in terms of what could be you know what 
could  be you know what you call strong features good features so right so people came 
up with  so this one guy came up with what is called SIFT right scale invariant feature 
transform  which is what I will talk about next class and that is actually robust to a lot 
of things  I mean it is robust to translation, rotation, scaling, it is even illumination 
changes to  a certain extent it is assigned the way the way they build it up right is also 
very systematic  and that that I think that is what I think we will do in the next class. 


