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  It is called the Harris Coroner detector, it goes after the people who worked on this  

problem, HCD if you will, Harris Coroner detector, Harris is somebody's name.  This was 

a paper kind of published actually interesting, it was a conference paper.  So to just motivate 

right what we mean by this right, so of course you know they kind  of formulate it in a 

certain way using gradients and all but just to motivate it why such a  thing makes sense.  

Let us just look at an image and let me draw 3 of them okay.  In one case I have what is 

called uniform plus some noise okay.  I am adding noise because you know it does not I 

do not want it to be wanted to think  that you know all images are all intensities are exactly 

the same maybe there is some amount  of noise there. 

 

  The second one is actually an edge and the third one is a corner okay.  So uniform means 

what I mean you can think of this as some I plus some N whatever right  I mean you know 

what is 0 mean with some sigma right.  This is something like that some Gaussian noise 

something that is added uniform does  not mean uniform noise okay, uniform intensity plus 

some noise.  Edge let us say we have got 0 here I mean we will just take an ideal case okay 

just  to give some insights. 

 

  Corner I think I will draw them by a different color, this is a corner right.  Now suppose 

I take a patch there is some patch which I decide some size okay.  I take this patch and 

move around okay in a sense right I kind of move around okay.  Suppose I am here at this 

location let us call that some xi yi I am sitting there and  I just move around okay.  In terms 

of the gradients what do you think will happen see for example the appearance  of the patch 

is going to change right as I move around it is not exactly the same right. 

 

  So the appearance of the patch rate is going to okay now let us just talk about the 

appearance  okay right.  Now let us not even talk about gradients let us just talk about 

appearance.  In the first case how much will be the change in the appearance?  Do you 

expect a lot of change in the appearance or do you feel that maybe there will be just  a little 

bit of change in the appearance?  Very little right so we all agree that the appearance will 

be the change in the appearance  is going to be minimal okay because most of it is uniform 

so except for some noise.  What about the next case edge?  So let us say I take a patch now 

I move around yes Abhijayan.  When you are okay now but then would this be somewhat 



going to say direction sensitive  the okay so which way would the change be minimal and 

which way would the change be  horizontally right so when you move orthogonal to the 

edge you will find a lot of variation  right horizontally if I pull this patch out like this you 

will see a lot of variation  but if I move along the edge there is going to be hardly any 

variation if I move along  there that means there is some sensitivity here right with respect 

to which way I move  okay which means that the appearance change depends upon how I 

move and if I move in a  particular way there is going to be a lot of change but then if I 

move in another way  which is like along the edge then it looks like there is not going to 

be much of a change  in the appearance. 

 

  What about the third guy?  I have a patch.  So I have the corner there sitting inside that 

path now I move.  Sagnik what will happen now?  Any direction if you move there is going 

to be a change in the appearance right whichever  way you move because you are actually 

sitting at a corner okay so in a sense right you kind  of that is what this Harris corner 

actually tries to capture so at a corner right whichever  way you move the appearance I 

mean appearance of that patch is going to change significantly  whichever way you move 

okay and that is what is you know essence of this and we will try  to capture it using 

whatever math is needed for that right.  Of course all this is there in that slide okay that 

anyway we will upload but you know  this too okay so then the idea is this.  So let us say 

that let you know let delta X and delta Y represent shift in X and Y directions  shifts in 

shift in Y X and Y directions respectively directions. 

 

  Then the change in appearance of a patch  of size W can be found as C of let us call this 

some C of delta X delta Y which is the  change C represent the change in the appearance.  

So this let us say we compute a summation I of X I Y I minus I of X I plus delta X Y  I 

plus delta Y and X I Y I belonging to this W which is the size of that patch.  So what this 

means is that means is that that right within that window okay if I move by  an amount C 

right delta X delta Y and I want to compare the patch right which I get with  respect to that 

particular motion delta X delta Y and how much is this change in the  appearance.  So you 

can of course when we play the standard trick which is to actually take this and expand  it 

in using Taylor's series so you have X I plus delta X make some approximations  now 

because you want something that is computable.  So you write this as I of X I Y I plus let 

us say and all these are scalars now right  you just into looking at intensities so delta X 

again is a scalar just a displacement delta  Y is a displacement. 

 

  So I am writing a scalar form plus delta X let us say we call this as what is what is  in 

notation I X okay and X I Y I plus delta Y I Y X I Y I and then you will have some  higher 

order terms which we will ignore what happened something.  What happened last line I of 

X I plus delta X yeah correct yeah thanks Y I plus delta  Y is equal to this one right X I Y 

I plus delta X I X plus delta Y okay and plus some  terms right higher order terms which 



we will ignore okay then what we can do is we can  actually push that in here and then we 

will get summation X I Y I then I of X I Y I minus  I of X I Y I minus delta X I X of X I Y 

I minus delta Y I Y of X I Y I.  So if we ignore those terms then this is all that we are left 

with of course these are  all this will this approximation will have some effect but that is 

okay.  So I think so what happens these 2 cancel off and you can in a way sense say that 

right  what you are left with is simply delta X I X X I Y I plus delta Y I Y X I Y I the whole  

square summed over all X I Y I okay.  Now if you expand this okay you can expand this 

one that will give you C of delta X delta  Y so you will get summation these are all scalars 

okay so you get like delta square  X I X square X I Y and all this I X and all this gradient 

right we should have some sort  of a mask right to actually do that which we have already 

seen you know you can I will  also talk about that but we are assuming that there is some 

way to compute the gradient  along X and gradient along Y and so on. 

 

  Plus let us say delta square Y I Y square X I Y I plus 2 what is this delta X delta  Y I X I 

X I Y I into I Y X I Y and it will get.  Now can we can we write this in a more compact 

form and that this looks like looks a little  messy can we write in terms of a matrix vector 

form or something this is after all you know  a quadratic right so this is equal to so we can 

write this as delta X delta Y and then  a matrix what will be the size of this guy again delta 

X delta Y.  So what will be the entries of this I X square X I Y I then I X I Y I will just I 

will drop  that X I Y I it is there I Y I X which is the same as I X I because these are all 

scalars  okay so this is all like gradient at a point okay so that is why it is okay to interchange  

the order and then you have like I Y square okay this is the same as what you had what  

what you had here right this is easy to check verify.  So now this delta X delta Y right has 

it is independent of the I right because it is simply  a displacement therefore we can actually 

pull that out and then what we will have is delta  X delta Y yeah exactly so summation over 

so now this I will put this as put this inside  sorry did you okay X I Y I then double 

summation I X X I Y I I Y X I Y I then double sum then  again I X X I Y I I Y I Y I and 

double sum I Y square X I Y I and then delta X delta  Y right and this matrix right let us 

call this as some R okay this is called this as  some matrix R okay.  Now okay now what 

we can do is you know so this I X that we can have let us say horizontal  gradient we can 

have a horizontal gradient operator for this and I Y right so horizontal  gradient kernel or 

whatever or mask right something you will need so which is may be  of the kind right a 

simplest that you can think about is maybe minus 1 0 1 all 0s elsewhere  this is the simplest 

that you can think of or you can have right because they actually  introduce a Gaussian 

average so therefore that is why they do not have less minus 1  minus 1 minus 1 that kind 

they do actually a Gaussian average. 

 

  Similarly I Y right you can also have a different vertical gradient and right that is all you  

need I mean because we just have I X I Y I X square which is simply squaring that number  

and I Y square which is squaring the Y gradient right. So what this so what okay now I so  



I think there is just this other point to mitigate the effect of noise to mitigate the  effect of 

noise the patch is first smooth with a Gaussian  or the patch is first that means the patch of 

size W cross W that you have right is first  smoothed with a Gaussian with a Gaussian. So 

what this means is that is that when you  compute your I X right if you had a continuous 

case then you are doing something like dou  by dou X of G of X, Y, some sigma S I call 

that as some smoothing okay capital S smoothing  applied on I at X I Y I. So it is like 

saying that you know you have  a Gaussian sitting on it and then you are doing some kind 

of smoothing I mean instead  of weighting everything uniformly you are having a non-

uniform kind of a weightage coming  from the smoothness through a Gaussian then in 

addition in addition similarly for I Y  okay so for I Y also you have something similar then 

also to give more weightage to the point  in the middle of the path then there is one more 

Gaussian so there will be some hyper  parameters okay that come in because of all this also 

to give to give more weightage weightage  to the point in the middle of the patch middle 

of the patch.  So what they do is you know so they use another Gaussian use another 

Gaussian which does the  following anyway this I think you know this is not so relevant 

but I am just writing it  because it is there so it is like minus X minus X I square plus Y 

minus Y I so minus  of Y minus Y I square by some divided by some 2 let us say sigma 

square W or whatever this  is not the same as the other one this is a different sigma and 

now so ideally so it is  like saying that when you compute R right so you have something 

like if you call this  as some say W of X I Y I right if this is the weight that you have then 

it is like equivalent  to saying that you are computing your R as some W of X I Y I into I 

X square at X I Y  I I mean okay now these are just some smoothing operations okay this 

is nothing to get overly  worried about this just some smoothing right that they are doing 

just to make sure that  it is a Gaussian because then you can give importance to something 

in the middle and  you know okay what is what is more okay now typically there are some 

hyper parameters  okay sigma W is usually 1 and sigma S is 2 I mean these are all hyper 

parameters okay  of this method but what is more interesting is this is the following. 

 

  So if you if you look at look at R itself right so the R that you had okay now if you  if you 

actually actually looked at the eigenvectors of R see first of all right R is actually  a 

symmetric matrix right as you saw it is like I X square what is it I X I Y I X I Y  and then 

I Y square right so it is actually a symmetric matrix  and you know that every symmetric 

matrix is actually normal right which basically means  that A A transpose is A transpose A 

right whenever that happens any matrix is what is  called unitarily diagonalizable as they 

say right if it is a normal matrix okay I mean  normal does not mean the normal abnormal 

not that sense normal matrix have you guys encountered  a normal matrix?  A normal 

means something like this a matrix is normal if A A transpose equal to A transpose  of 

course for a symmetric matrix it automatically is true but there are matrices right that  are 

not symmetric but actually obey this for example if it is complex right let me just  drop A 

Hermitian is equal to A Hermitian A have you seen a matrix like that DFT sorry  no 



orthogonal will mean A A transpose should be identity that condition is not there it  does 

not have to be identity it is just that A A transpose should be equal to A transpose  A I am 

saying DFT will obey this a DFT is not as symmetric do you know that the DFT  matrix is 

not symmetric right but then it is normal it will satisfy this only thing  you should replace 

transpose with the Hermitian because it has complex entries right so this  is like real this is 

not a real case but it is complex and all that you should be more  careful say A Hermitian 

A is equal to identity in fact for a this one for a DFT it is much  more powerful okay so no 

you call it unitary orthogonal means transpose when Hermitian  is involved it becomes 

unitary okay there is a slight difference between the two okay  now the point is this right 

so when you have so which means that this is a normal matrix  and there is actually a 

theorem right that says that every normal matrix is unitarily  diagonalizable or in this case 

you know unitary because everything we will just take all real  numbers so let us not worry 

about complex entries you know what this means is that you  can diagonalize it as P 

diagonal P transpose okay where this P P transpose is identity  okay so all these are actually 

2 cross 2 so this guy right so this is actually a diagonal  matrix right so this is like lambda 

1 0 0 and then you see lambda 2 okay and where are  the eigenvectors of R this is called 

this is an eigenvalue eigenvector decomposition  right why do you call it eigenvalue 

eigenvector decomposition?  So which what of the P is it the rows of P or is the columns 

of P columns of P right  so you can show that if I take let us say the ith column of P and if 

you do R times  let us say that P i you can show that that will be equal to lambda i P i right 

that is  why it is an eigenvector so that is why you call it an eigenvector eigenvalue 

eigenvector  decomposition right now the eigenvectors are of R are sitting as eigenvectors 

of R are  the columns of P are the columns of P right now so an eigenvector right what is 

it what  is it really represent an eigenvector you have a covariance matrix right this is R 

this  is like I mean all of all of whatever you expect of a covariance matrix right this guy  

will actually satisfy now when you have when you have a covariance matrix and you have  

done this eigenvalue eigen decomposition what do the eigenvectors really tell you they tell  

what the see variations are right in which directions the variations are from highest  to 

lowest right so for example so for example right I mean you know so if you find that  if 

you find that if you find that right along let us say along say one direction you have  the 

highest variance right how will you capture that that is captured through the eigenvalue  

right so the eigenvalue should be high for that that is when you say that that is the  most 

dominant sort of a component along which the variations are the highest so it means  that 

so it means that when if you had points right which had a distribution like that then  you 

will say that the spread is maximum along this direction then the probably the next  spread 

is if it is a 2D right then you will say that in the orthogonal direction there  is still a little 

amount of spread right this is what the eigenvectors will capture this  is what this is exactly 

what these eigenvectors of R will also capture and for us right it  is all in terms of 

interpreting this now in terms of what the what it should reflect about  my corner now right 

so what you can show is that the eigenvalues that you get out of this  and then the 



eigenvector it will have an interpretation with respect to the edges that you have and  when 

2 edges meet that is when you get a corner right therefore for a corner the eigenvalues  will 

have a behavior of a certain kind so you can actually make out what point you are  looking 

at I mean you know it is not just that it will tell you a corner it can tell  you whether it is an 

edge where you are sitting whether it is a flat region where you are  sitting or where you 

are sitting is that a corner right that is the kind of information  that this matrix can actually 

give you which we will see in the next class there are lot  of time.  Sometimes the corner 

should be necessarily orthogonal or it can get any other.  No no so the thing is right it need 

not be orthogonal you are saying that what if I had  an edge yeah that is also fine that is 

also fine because there also when you move around  right I mean you will see there what 

will happen is you see in an orthogonal case right  you will see when you have something 

like this which is actually also a corner then  what will happen is you know you will get 

one direction along which the maximum spread  is there the other one the interpretation 

will be hard this interpretation will not  be so easy because the spread right the eigenvector 

will still reflect that there is an orthogonal  direction in which the next spread is the highest 

but if you have like this right then  it is much more clean I mean then you know that right 

along one direction in the orthogonal  you can associate with that but corner does not there 

that is I forgot to tell it does  not necessarily mean that they have to meet orthogonally and 

all it can also be an edge  like this corner like that. 


