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  Okay, so I will just write down the expression, okay, yesterday the box convolution that 

we  had, I think we all understood what it is but let me just write it down.  So it is like yij 

is equal to summation m equals 0 to k1 minus 1, n equal to 0 to k2  minus 1, then sum over 

all channels c equal to let us say 1 to capital C, then i of i  minus mj minus n the channel 

into h of m, n that channel, right.  In general, okay, in general wherever you are, right, 

when you are doing a box convolution,  right, this is how it is.  So if you have multiple 

feature maps, then it will go, so it is like this, right, if  at the input if you had 3 channels, 

then the c will go from 1 to 3 and i is that particular  image right on which you are acting 

or a feature map.  If it is somewhere in between the, in between in that network, then it will 

be one of the  in between channels.  If it is at the input, then it will be i itself. 

 

  So it can be like a color image, you know that has 3 channels, r, g, v and b, there  is a 

color, red color, green and blue.  So it could be those channels and then you have a filter 

which is for, right, which is  actually for that channel and therefore, when you combine 

concatenate for all c's, you  will get actually a box filter and you are just summing up, right, 

like I said, I mean,  what you have is this kind of, you know, so you have, you have this 

kind of a box filter,  right, that is actually summing up, summing up along, along the, I 

mean, a channel depth,  right, if you want to think about the channel depth.  So you have 

got multiple channels and you are applying a box filter and that box filter  is simply 

calculating a convolution over each feature map and all of them are being summed  up, 

right and k1 and k2 are like the size of your filter, right, h, the size of h is  actually k1 by 

k2, right.  So depending upon the, it can be symmetric, it need not be symmetric, right, so 

in general  it will be like some k1 by k2. 

 

  You can think of situations where, you know, h need not be square, okay, so it is not going  

to say necessary that h should be square and so you are summing up over k1 by k2 which  

is the dimension of h and you are summing up over all, all channels, right, c equal  to 1 to, 

1 to the capital C.  So capital C will be 3 if you are at the input and if you have a color 

image, capital C will  be 1, I mean, if you are at, if you just have 1 channel right at the 

input, okay.  Now having said this, let me actually go to, go to an animation, right, which 

I, which  I thought I will show to you, right and so I think this you saw us today and of 

course,  you know, right, this is what is actually is a document kind of a reader, right.  So 



you can think of, you know, a digit 0 to 9, okay and what is appearing, right, is here,  what 

is being, you know, input and it is supposed to, you have a network that is supposed to  tell 

what is the, what is the right answer, right, what kind of a digit is this and the  inputs as 

you can see, right, the way they are, they are not very structured, right,  they are like the 

way you write them, like you do not really write in a very structured  way.  But irrespective 

of, so these training samples if you see on the left, right, so the kind  of training and all that 

you give is like, you know, you will give all kinds of things  and then it is always better to 

expose a network to various variations of the input. 

 

  In this case it is just a digit and therefore, right, you want to kind of expose it to various  

variations that can occur and the network is supposed to sort of figure out, right and  after 

training if you input a digit it should suppose, you know, it should tell what that  is a digit 

is.  So these are all very small images by the way, right, this is like 1989, 60,000 training  

samples, 10,000 test samples, output is an integer between 0 and 9 and you can see here  

that the way you train is that, you know, you give various translations of the, of a  digit, 

rotations of a digit scale, right, I mean you may, some people may write big,  some people 

may write small, then you can have squeeze and stroke width, right, people,  some people 

may, you know, write bold, some may write, you know, less bold, noise, so  you train 

against all of that.  So like I keep saying, right, a lot depends on how well you train, I mean 

that is, that  is kind of a bottom line, right, in terms of how rich a dataset you have, right, 

the  more rich it is the better it is for a network because then it is exposed to different 

variations  and if it has seen those variations then, or at least, you know, things that are 

close  to that then there is every possibility that it will give out a proper output, okay.  And 

yeah, this I think we have already done, so this, so this local, local connectivity  and the 

parameter sharing but then before that, right, I mean there is something called  a pooling 

layer, okay, which is something that we have not done yet, it could also have  been done 

for MLP, okay, but we did not do it at that time and generally it is used for  2D, okay, what 

is called max pooling, it is generally called pooling.  We will come to that in a minute but 

then before that I thought I will show you these  animations, okay, which kind of tell you, 

okay, some of these are animations, some are  not. 

 

  So to just tell you, right, what does local sort of a connectivity, right, what it means  and 

what the parameter sharing actually means and you have already seen it yesterday, I  

wanted to show that first so that you have a picture in your head in terms of how those  

filters act and you know, the output channels, input channels and all right.  When I say 

channel, I mean a feature map, okay, that is an accepted sort of, you know,  terminology.  

If I say I have got n number of channels, what I mean is n number of feature maps and  

filters are typically the weights, okay, so filter means it is that kernel containing  the 

weights, okay, that will be normally a terminology that we will, that we will continue  to 

follow and here, right, if you see, if you have, you know, an MLP, right, then you  see that 



if I have, so here is your, here is your input, okay, the blues are your input  and then the 

reds are your, you know, next layer and you know that, right, if you had  to learn the weights 

or if you had to train a network, I mean, you would have like, you  know, if you just 

consider the weights, you have got like 7 into 3, right, which is actually  21, this is just for 

a small network.  But suppose you said that, that I just assume local connectivity, okay, 

which means that,  which means that this guy, right, instead of seeing all of them, all 7, just 

like we  saw yesterday, right, you see, I took an image as an example, because in an image 

it is easier  to sort of, to sort of understand this locality business, right, you can also do it 

for audio  and all, but people are more accustomed to seeing images, you know, the 

interactions  being local and so on, and which is exactly what is happening here.  So you 

say that, so you say that, right, you basically every neuron fixates on a kind of  a local 

region, right, so for example, so it will only fixate on these 3. 

 

  Yesterday what you saw, saw was actually a spatial grid, you saw a 3 cross 3 or a 5 cross  

5 region.  And I said, and as I said, a receptive field is something that can become bigger 

and bigger  as you go right down the network, right, what a neuron ends up seeing, you 

know, with respect  to the input, right, that, that can be much larger than the 3 cross, 

immediate 3 cross  3 that it is seeing, because each layer in turn, that neuron is seeing 

something else  with the input and yesterday we saw that example, right, so receptive field.  

So this could happen at any layer for that matter, right.  So here we are just considering 

this to be the, to be the first input going in, but you  know, it will generally apply, I mean, 

wherever you are, right.  And therefore, right, what you find is that, you know, you are 

saving on the parameters,  right, instead of, instead of say 21, right, now you have got only, 

only say, right, 9  to, 9 to find, which means that the parameter sharing has not yet 

happened, right. 

 

  What this means is that you still have, you still have, right, 3 parameters for this,  3 

parameters for this and 3 parameters for this, that you are independently finding out,  right.  

So the weights are still like 3 into 3, just a toy example, but then, right, it is storage  efficient 

because now we have to store fewer weights and then write runtime also, it says  faster and 

then if you go for parameter sharing, right, so what you had was this situation,  right, where 

the earlier one was like you had different weights coming for each neuron.  But as I said 

yesterday, when you talk about a convolution, you sort of do not just assume  that, of 

course, in your 1D, right, you would have seen, you know, things like impulse response  

being, you know, infinite in support and all that, that is also possible.  But those are not the 

situations that we kind of deal with in, in a kind of network.  We simply limit it to 

something like, let us say FIR, right, a very finite, finite sort  of, you know, support and in 

fact very local, okay, and that suffices, I mean, there is  no reason to make it, make it very 

big. 

 



  And there is one way, right, by which you can still, you know, if you really feel that  you 

should be looking elsewhere in an image and it is not enough to just look at locally,  there 

is always something called an attention that can be brought in, okay, which will then  kind 

of focus on things that are really relevant, okay.  So that is a mechanism that came in later 

and people figured out that that is a much  better way to sort of, you know, to sort of what 

you say, to sort of, you know, use the  information in image than to increase the depth by 

L, by L, you know, by increasing  the number of layers.  That is one way by which you can 

get more and more exposure to the image, but the better  thing to do or more efficient thing 

to do is to use what is called attention.  If time permits, I will just maybe talk about 10, 15 

minutes about that, but let us see,  right, how it goes.  And if it is parameter sharing, then 

we simply say that they all share the same set. 

 

  So W1, W2, W3, this is like really a convolution now, right, because you are kind of 

translational  invariant and you are very local and this is like convolution with a very, very 

finite  sort of a support, right.  And so, right, this is even more efficient in terms of the 

weight storage and so on.  And one of the things that you will kind of notice is that, right, 

between an MLP and  actually a CNN, you see that, you know, you already have very, very 

few weights, I mean,  right, therefore a regularization sort of implicit, right, because, you 

know, you do  not allow for too many of these unknowns to come in and so on, instead of 

playing with  just few parameters and you are hoping that they will actually do the job, 

unlike an MLP  where you had to, but even then it does not mean that you do not use 

regularization, but  required to much lesser extent because the parameters to begin with are 

not really that  many.  Actually, we will see a network, right, that will actually give you a 

better idea.  Then you can actually extend it to the case of more input channels, right, like 

I said,  this could be at any layer and then, right, if you have more input channels and if 

you  are also sharing the weights, then what you see is that, right, these weights will be  the 

same, right, across the neurons, that is the parameter sharing. 

 

  They are local because of the fact that the support is still like, you know, fixated on  just 

3 in the input channel 1 and 3 in the channel 2, but what you find is that the weights  that 

go and then work on channel 2 are not the same as the weights that go and work,  that go 

and work on channel 1.  This is exactly what I said yesterday, right, if you had multiple 

channels and if you are  having a box filter, then the filter that acts on the first channel can 

be, say, different,  the weights, right, can be different from what is acting on the second 

channel, can  be, you know, different from, see, finally a network might figure out that 

maybe the  same set of weights will work, but we do not force it.  And of course, because 

of parameter sharing, so this is exactly what I had shown yesterday,  right, so you could 

have something like this and, and that you have, okay, I have a different,  I need a different 

color, but anyway, so you have a box filter that runs through and through  and that box 

filter, right, will have a set of weights for this, will have a set of weights  for this, will have 



a set of weights for this, but overall it is just one filter, okay.  This is for, this is for, let us 

say, one channel, right, this is for one kind of a  feature map and then you can again change 

this box filter, right, when you want, when  you want, you know, a different, a different 

output and so on, one more channel if you  want, then you actually change that box filter, 

change in the sense that the weights and all  will again change, you have a different box 

filter that then acts on that volume.  So this is for the case of two input channels, right, and 

so I think, you know, this is something  that you saw yesterday, but not in this form, right. 

 

  Then you can also have one input and then two output channels, right, this is exactly  what 

I was talking about right now.  So, so for example, right, so, so in this case what will 

happen, you have a parameter  sharing.  So for example, these weights, these weights are 

all, are all, are all the same, right,  which is like, which is like saying that, saying that I 

have this and then I have, so  this is like, okay, so I need, I need to see two output channels, 

I have one input channel,  right.  So what I will do is I will have one filter that works on 

this and then gives me this,  this output and then, and then I have got another filter that 

again works on the same  input gives me, gives me, gives me a different feature map, that 

is what you are seeing here.  So the second output channel is this, right, and these weights 

are again shared by which  we mean that as you go from here to here to here, you keep on 

applying a convolution,  then whatever values you get here, they are all obtained with the 

same, same filter, you  do not change the filter, right, that is why those colors are all the 

same, right, these  colors from, from neuron to neuron within a layer. 

 

  So, so when you look at this, you should, you should look at it as kind of neuron sitting  

in this spatial grid.  When you look at this, you should look at it as neuron sitting at the 

input.  This is 1D, but in 2D, that is how, that is how you would actually visualize, right.  I 

mean, 1D maybe sometimes is easy to visualize, but 2D is also equally convenient, right,  

and that is, that is what, this is what we saw yesterday, but this is just a different  way of 

visualizing the same thing.  Then a generic level, right, looks like this. 

 

  So there is a local connectivity, right, which is what, by which we mean that there is a  

spatial support which is very, very finite and limited in its spatial extent.  And by the way, 

the weights and all, we are not forcing anything, right, these are all  of course, of course, 

the real weights, I mean, people have tried complex CNNs and all,  but I do not think much 

has come out of that.  So really, weights are all real, they can be negative, positive, right, 

we do not put  any constraints on them.  And what is happening is at any, at any, for 

example, this is an output map.  So, so if you are, if you are looking at, looking at any one 

feature map in the output,  right, then you are really looking at a box filter, okay, that is 

locally acting through  the, through the right input channels. 

 

  So an input could be like multiple channels that you have here and you have a box filter  



that is kind of working through the, through that volume, right, and whatever is that.  So 

this cone, it will kind of, you know, eventually lead to 1 pixel here, then, then maybe right  

after this you are doing something and then, and then you have got, you have got one more  

feature map out there, then that will kind of work through this volume, right.  So you will 

have like this volume that it will work through and, and then all of this  will kind of say 

converge to a point here.  You may do something in between also, it does not mean that 

convolution has to be followed  by a, by another convolution, you can do something inside, 

between the two, but whatever it is,  right, so you are sort of, right, this is what you are 

effectively doing.  So you are doing parameter sharing, you are doing local sort of a 

connectivity, right. 

 

  Now in general, if you look at a CNN architecture, right, any CNN for that matter, you 

will typically  find these kind of things, okay.  So one is a convolutional operation, which 

we have already seen, and then there should  be a nonlinear activation because convolution 

is all the linear part, right, where you are  just, just doing your weighted averaging, adding 

a bias.  I am not so explicitly speaking about bias, but it is all there.  And what you are, 

what you are really doing is, right, you are doing convolution followed  by a nonlinear 

activation and typically that will be reloop.  And then there is a pooling operation. 

 

  Pooling operation is typically done, you know, for two reasons.  One is you might just 

want to reduce the size of your feature maps.  It is, you can think of it, it is not exactly a 

sub-sampling operation because sub-sampling  typically means that, you know, for 

example, you know, if you have four elements, right,  you can just merge them to one, 

okay, that is typically sub-sampling.  You could just uniformly average them or you could 

have a filter that actually tells how  each one should be weighted.  So, in a simplest way 

you just average them, but that is called, that is a way to do, that  is a pooling, that is called 

average pooling, but there is something called max pooling  where you actually pick the 

one that is maximum, right, in that and the idea is that take the  maximum information and 

not really propagate, right, everything out there. 

 

  This was, this has been originally proposed in other, in the guise of something else,  okay, 

and I think the CNN folks gave it a name as max pooling, but this was not a very  new idea.  

I mean, so the people have used this before.  I do not know what terminology they were 

using at that time, I cannot recollect now, but  you know, max pooling is a name that came 

later.  Then what you could typically have is again a convolutional railing and, okay, this 

is  not kind of say necessary that you will always have all of this.  Sometimes you may 

have a pooling, you may not have a pooling and that is all sort of,  you know, a trick of the 

trade, right, in the sense that what architecture works best  for a problem is something that 

nobody knows, okay. 

 



  Sometimes you take cues from architectures that have already been built for certain 

problems  and then you know that that may be a good starting point, right, instead of just 

starting  from, you know, in the wild.  So that can be a good starting point, but no one really 

knows what is the best way to  kind of go forward.  And what you typically, if you have a 

classification kind of a problem, not kind of say necessary  that every classification should 

end up in a fully connected, you know, fully connected  output layer, but many a time you 

will find that, you know, there will be an FC layer  which is fully connected, a bunch of 

FC layers and in this case what is happening is you  have come till this point and these are 

all still your 2D feature maps and you are sort  of unwrapping them, right.  So that is called 

the flattening part.  You can flatten in whichever way you want. 

 

  It is called lexicographical flattening.  So you may put like, you know, first row, I mean, 

you can unwrap in whichever way you  want.  Even network will figure out accordingly.  

If you unwrap the other way, if you take this way and then unwrap or if you take this way  

and then unwrap, whichever way you unwrap, it will then figure out what is the best way  

to learn the weights for that unwrapping.  But eventually the length of the vector will be 

the same, right. 

 

  So this one-dimensional vector that you get, right, that will be the volume of, so right,  if 

you think about this m and k, so it will have a dimension m into n into k, right.  That will 

be the dimension of that one-dimensional vector.  So that is called a flattening operation.  

And then after that you will get these, get a next fully connected layer if need be.  Typically 

it will be there and then maybe, right, you have a classifier, you know, the  output layer 

with a softmax sitting there and then that is going to do a classification. 

 

  Oh, excuse me sir.  Yeah.  Sir, why are we using a ReLU in the process?  Why are we 

using a ReLU?  No, I mean, you know, for the same reason that why you need a non-linear 

activation.  Why should one not use ReLU?  No, sir.  If I do not use any activation.  No, 

no, but then the point is a non-linearity, right, you have to bring in, no.  ReLU brings in a 

non-linear activation. 

 

  Otherwise all the operations will become linear, right.  Otherwise you can combine two 

convolution blocks and effectively you get only one filter,  right.  So, this non-linearity, 

see, the whole thing behind neural networks is this kind of non-linearity  that you are trying 

to bring in, right.  And the non-linearity you can bring in only through some activation. 

 

  It can be sigmoid, it can be something.  But as I said, right, ReLU, the gradient problem 

is not there with ReLU.  Even if x is high, right, I mean gradient is still 1.  Whereas sigmoid 

and all you typically do not use at all.  In fact, right, sigmoid and all actually ends up being 

used in, you know, RNNs, recurrent  neural networks when you want to do a gating and so 



on, which I think next class I will  talk about, right.  So, really sigmoid and all, you know, 

you do not even use it that much, like even softmax  is what you use at the end, right, 

typically for a, you know, multi-class problem. 

 

  So yeah, so I think, you know, you could have used anything else for that matter, leaky  

ReLU you can use.  But typically you need a non-linear activation there because that is 

what will then pull  out interesting features which you then aggregate over channels, right.  

And if you are asking why are you kind of using a box filter, the answer is still that  you 

have to aggregate information coming from various feature maps.  And what is relevant 

and what is not will be up to the weights that you find, right.  If you find that, you know, 

the network does not believe that the last feature map is really  useful, just put all of them 

as 0 or whatever or very low values, not 0, it will give just  very low weightage to them. 

 

  Okay, now, right, just wanted to play out these animations, right.  All of you are familiar 

with the convolution operation, but just at a 2D, right, as I thought,  if you have not seen 

this before, so it is like a filter, right.  So the yellow thing that you see, 1, the cross, that is 

the filter, it is like 101, 010, 101,  right.  And also one more thing, right, by the way, I 

mean, do not get worried if you do not see  a correlation versus a convolution sort of, you 

know, a distinction.  Like for example, a correlation is like what y of n is summation, what 

is that, xn, hn  plus m, right. 

 

  That is what we do in 1D.  But in, but here people do not bother so much about, you know, 

flipping and like I said  yesterday, right, ideally in convolution you should flip about both 

the x and y axis and  that is when you get a filter.  But then, you know, all that network 

will kind of figure out inside.  If you do not flip then, you know, then it will kind of 

understand it accordingly and  move on, right.  So really do not get too worried, I mean, if 

somebody is not paying too much attention  to that flipping and all.  Of course, if you have 

a symmetric case, then there is no issue at all, right. 

 

  I mean, if it is isotropic, there is no issue.  But if it is not, you know, then it will learn 

accordingly, right.  So you see, so you see that, right, you are taking this kernel and you 

are shifting it,  right, just like you do in 1D, right.  I mean, you flip it and then you get a 

shifted left, right, top, bottom.  Here you have to go like left, right, top, bottom, right, all 

over you have to scan and  then everywhere you take a weighted sum.  For example, in the 

last place, right, what do you get?  What was it like 1 plus 1 plus 1 and then 1, 3 and then 

4, right. 

 

  So the last entry should be 4, right.  So whatever, right, so it is kind of, so it is easy to 

figure out.  So the last one, right, I was just talking about this entry, right.  So wherever 

you are, right, I mean, you can do this.  Now if you, there is one more thing, right, people 



sometimes use what is called a zero  padding, okay.  This is to sort of, if you feel that, you 

know, for some reason you want to, you want  to sort of play around with the size of the 

feature map. 

 

  Because you know, see one of the things that you will realize is that when you are doing  

a convolution operation, right, this is your image on which you are trying to do a 

convolution  and I mean, if it is a 3 cross 3 kernel, so what I am saying is that, so if you 

have a  kernel sitting here, right, now you will, you will not be able to take that kernel here,  

right, because then it will kind of spill over, right, so you will get something like  that, 

right, I mean, so one row and one column will sort of go out of the image, right.  Therefore, 

you may think that I have to stop inside.  If you stop inside, then effectively your size has 

gone down.  This is somewhat counter to what you typically do in 1D, right, in 1D it is 

like, right,  m plus n minus 1, right, I mean, that is the eventual size, that is not the way we 

do it  here, okay.  Now what typically is done is you kind of zero pad, okay, so if you want 

to play around  with the size, you just zero pad. 

 

  So what you do is, so for example, in this case without padding, right, so the way you  

have to interpret it is, right, this is the kernel, that 3 cross 3 thing that is going  around, that 

is your filter and this is your input, right, and then output is here, right,  so what you see is 

that here if you just let it, every time you just let it stay inside  the boundary and therefore, 

right, you can only get, you see, 4 values which is like  a 2 cross 2 output map.  So there is 

another thing called stride which is like how much jump you do, okay, and stride,  again, 

right, something that can be, that is typically used along with a convolutional  operation.  

So you can see here that when you are moving, so first thing to notice is what is the size  

of the filter, right, and then second thing that you should notice is what is the size  of the 

input feature map that you have and accordingly, then look at whether you have  zero 

padding and whether you are using a stride.  Now here stride is 1 means you just go like 1 

step at a time, you do not jump over, whereas  stride to, right, you see, for example, right, 

I mean, first I will start here, then I will  jump there, okay, then from here I will jump here, 

right, because I have to jump at a rate,  if you see here, right, it will jump there and then it 

will jump there, right. 

 

  So it is like a stride of 2.  So stride means both along X and Y are jumping, right.  So that 

is, you can have stride whatever, right, does not limit, these are small ones,  so we are 

taking 1 and 2, but you can have stride 4, 5 and so on.  And again, accordingly, what size 

you get here will change, okay, but there is a systematic  way to arrive at that number, 

okay, what should be the output, right.  Then you can have both zero padding and stride.  

So here is a 3 cross 3 kernel that is being moved around, right, and you are trying to  

convolve with the input and then output is out here and then you can add zero pad and  a 

stride of 2. 



 

  So 2, 2 means along X2 and along Y2.  Typically, this is all, I mean, uniform along X and 

Y, but there is no reason to force them  that way.  So for example, right, so the way to kind 

of, okay, think about it is this.  So if your input feature map is like, say, W1, okay, here it 

is, right.  So if you are accepting an input of size W1 cross H1 cross D1, what is D1?  The 

number of feature maps, right, number of feature maps in the input, W1 cross H1  is the 

spatial extent, okay.  So if you have W1 cross H1 and then D1 number of such feature maps 

and if you are using  number of filters k, what does that mean?  That means in the output 

you will have k feature maps, right. 

 

  So I mean all this now you should be kind of comfortable with.  So when we say number 

of filters k, that means we are trying to use k number of box filters  and if you use k number 

of box filters, you should actually get k output feature maps,  right.  And spatial extent F, 

so spatial extent F means of the filter that you are using.  So here we are assuming it to be 

F cross F, but it can be F1 cross F2 also.  There are situations where you need a rectangular 

kernel and all, okay, that generally F cross  F, stride is S which you know now and then 

amount of zero padding is P. 

 

 Then what you  have is W1 minus F plus 2P by S, so it is like this, okay.  Whether the way 

it is written is a little confusing, so think about this as W2 is equal  to W1 minus F plus 2P 

by S plus 1, okay.  And similarly H2 is whatever, H1 minus F plus 2P by S plus 1 and D2 

which will be the, which  is what is the, what is the depth of the output feature map, that 

will be of course equal  to k because that is what, that is the number of filters that you are 

using, right.  And so of course you can calculate how many weights and biases that I think 

yesterday  itself I told you, right.  So in this case how many unknowns will you have?  So 

for example, right, I mean you have a filter of size F cross F, then you have what, you  have 

a D1 size, right, in the input. 

 

  That means any variety you have to find for one box filter you should find F into F into  

D1, right.  And then you have got k, what is it, number of filters k, right.  So into k that 

many feature maps, so that means that many filters, box filters, k number  of box filters 

and then plus the biases which will be like k, right, because and always  remember, right, 

for one feature map there is only one bias.  Just like you have spatial invariance of the 

weights, the bias is also invariant, right.  So it remains a constant across all the neurons 

within a feature map, okay. 

 

  So it is like plus k.  And therefore, right, and of course, right, so the pooling operation, 

right, looks like  this.  So, so right if you have 1, 1, 5, 6, right, so and if you say that I am, 

and pooling also  you can, you can get a say define in terms of the filter.  The filter simply 

means what is the local extent that you are seeing.  And there is no filter to be estimated 



here, okay.  This is unlike the previous things where you have to estimate weights. 

 

  There is no, there are no unknowns that a pooling layer introduces.  It does not introduce 

any unknowns.  Just a matter of whether I take the support like 3 cross 3 or whether I take 

2 cross 2  or whether I take 2 cross 3, what size I want to take.  So here the filter says 2 

cross 2.  That means you are just looking at a 2 cross 2 region.  And then whatever is the 

maximum value you kind of, you kind of put that. 

 

  And similarly you take this, find that the maximum value is this, 8, put that and whatever  

it here it is 4, so you put that here, okay.  And here also you can have a stride.  So which 

basically means that I can start here.  I could have taken this one also if my stride was 1.  I 

could go like you know one step at a time in which case, in which case you know I will  

get basically one more entry here, okay. 

 

  But in this case the stride is actually 2.  So I am taking here, then I am jumping, okay.  

Then I am jumping down, then I am jumping down.  And the same formula applies, right, 

whatever you had there.  And the main reason why you want to sort of you know use the, 

use you know pooling is  to actually reduce the spatial, you know is to make sure that you 

have fewer unknowns  and also the fact that it will probably help you learn, you know learn 

in a sort of you  know a better manner and then computationally that it will be advantageous 

if you have fewer  unknowns to estimate down the line, okay. 

 

  And always remember pooling does not involve any new computation.  Therefore, when 

people talk about layers, pooling is not considered as a layer because  layers typically mean 

that some sort of a computation should happen there.  That means some weights have to be 

estimated, something should go on there.  This is a typical terminology, right.  So if you 

see that you know something has 6 layers, then you will actually that will  typically mean 

that there are 6 layers where the computation is going on.  So in between if you have 4 

pooling, I mean it would not add to the number of layers. 

 

  I mean this is generally the case but if somebody you know represents it in a different 

way,  this is the thing.  Of course average pooling can also be used but not as popular as 

max pooling, okay.  And the formula is exactly the same, right. 

 

  You can cross check all this, right.  I do not want to do this.  Please go ahead and cross 

check, okay.  And so the ReLU anyway, right, you people know flattening, softmax, right, 

all this  you know, okay.  So I think let me go to the next one, right.  So I thought what we 

will do is you know we will take one architecture today, right.  That is what I wanted to do 

and AlexNet, right, for example, okay, which is one of the most  important sort of 

architecture, which is one of the very first, right, to actually emerge,  okay. 



 

  And I thought we will do that today, okay.  So that right, I mean one architecture if you 

understand, I mean you know you will get  a, this one we will go in, yeah, I mean not in 

great detail but still to fully convolutional.  Does that mean that it should flatten the entire 

image and do only convolutional?  No, no, no, fully convolutional means 2D convolution.  

Fully it is actually 2D, okay.  So nowhere any flattening happens. 

 

  So it is like till the last one you have a 2D feature map.  That is fully convolutional.  So 

nowhere are you doing of an NFC layer fully connected.  We will have like m into n number 

of eights.  That will never happen. 


