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  Yeah, early stopping I think I had told you data set augmentation I said L2 norm on the  

weights is where we started, right.  So this regularization as we move forward, so one of 

the other ways to actually regularize  is to introduce a regularizing term.  Regularize means, 

means you know various things for example, restoration problems and all.  The classical 

way of calling what regularization is, is a little sort of you know this one  different.  Here 

by regularization as I said what we really mean is that we would like, I mean what you  say 

right, we would like to kind of reduce the weights right which we are using, the  total 

number of weights.  You want to kind of make sure that only those weights play a role 

right that really have  to play a role. 

 

  And one way to do that is to actually introduce an L2 norm on the weights and which is 

what  which then leads to a modified sort of a cost function.  So then you know like I said 

I think last time I had written some L tilde theta for  that right.  So if you go to that 

expression, so what we had was yeah L tilde, okay if you just talk  about weights I will 

write it as omega okay.  So to be more kind of specific if you are talking about the weights, 

L omega plus let  us say some beta by 2 norm of omega square, norm of w square. 

 

  So this L omega is still the same old cost which could be a mean square error or which  

could be a cross entropy loss right.  So this can be an MSE or a cross entropy depending 

upon what kind of a problem you are solving.  By the way right, so this cross entropy we 

are talking about this cross entropy there  is something that you should be aware of which 

I will just you know there will be a brief  sort of a digression but then we will kind of 

quickly come back.  There is something called a softmax which is used when you talk about 

a cross entropy  okay this is like a module that we actually put I mean so right now what 

you have is let  us say if you are doing a classification problem right you will come till the 

end till the  output layer and in the output layer right I mean you can actually think about 

because  you have let us say right I mean you have a network right which takes some input 

and  then let us say right you have got let us say the simplest case is what I mean you can  

think about think about right 2.  So you can think about just you see 2 outputs okay in the 

simplest of cases. 

 

  Let us say I am just trying to do a 2 class problem I want to say whether it is a foreground  



or a background right.  So then what you can then in such a case right you will have maybe 

a success for let us say  a foreground is P then a success for the background is 1 minus P 

right and this layer right which  you have at the output that is actually sending you that 

value I mean you can think of because  you need a probability as the output because you 

are trying to solve a classification problem  you might want to say that I would rather use 

a sigmoid there because I know that a  sigmoid will go from 0 to 1 therefore right I would 

just want to use a sigmoid as my activation  function at the output so that the values right 

are actually you know they would be  a probability they will sum to 1 between 0 and 1 all 

that right.  But what can happen is if you kind of so right this will be a binomial case but if 

you had  you know a multinomial case where let us say you have got you have got you 

know several  classes right I mean typically one does not limit oneself to just a foreground 

or a background.  For example, that image net kind of a classification problem that we had 

1000 classes right.  So then I mean it no longer makes sense to talk about P and 1 minus P 

and so on it although  the no is they should all sum to 1. 

 

 So in so it is it is in such a situation that the  softmax comes in and the softmax actually 

right enables you to not just limit yourself  to a sigmoid I mean you can have any activation 

in fact with the output okay even if it is  a classification problem. Because for the earlier 

case it looks like  you should have a sigmoid because that is what will output a value 

between 0 and 1 but  you know that is not actually necessary especially when you go to 

multinomial case right when  you want to see a multinomial case then what is done is.  So 

for example, you have your outputs coming in from the activation of the at the output  then 

let us say that that those are okay I mean what we will be using some Y hat right.  So let 

us say let us say what you are using is some Y1 hat last time I think that toy  example that 

we took we had Y1 hat and Y2 hat but let us say we are we are we have more  of them you 

know Y2 hat and let us say we have all the way up to some whatever you know  let us say 

Yn hat. So we have got n classes right it is a multi  class problem now and now what we 

can do is now because of the fact that you see these  Y1 hats could be limited to values 

between 0 and 1 or they could even come from some  linear activation function right we 

do not know it could be anything for that matter  then what is done is for so for example 

right you would convert this Y1 hat into let us  say let us call this sigmoid let me just call 

it as some sigma then what I will do is I  will take sigma of Y1 let us say okay in fact for 

any Yi right Yi hat I will write this  as e raised to Yi hat by summation e raised to Yj hat j 

going from 1 to n okay for the  n number of classes. 

 

 So the thing is that what you do is you actually  take the outputs that that you get for in 

fact all the classes Y1 hat Y2 hat and then  you sum them up right at the bottom denominator 

and then numerator you raise e to the I mean  you raise you know you keep it as e raised to 

Yi hat. Now the idea is that if you now  one thing is right now Yi hat whether it is negative 

or positive it does not really matter  it could carry any value finally sigma Yi hat will now 



be a number between 0 and 1 because  if you sum up you know if I do summation sigma 

Yi hat over all the i's equal to 1 to n right  that will be equal to 1 because this will this if 

you keep adding it will be the same  as whatever is so that you can see. So then it will be 

like summation e Yi hat  and then at the bottom you have summation e is e what is that Yj 

hat and they both are  equal and therefore these values will sum to 1 and it is a kind of you 

know clean way  to clean way to sort of go from a binomial case where you would have 

had a situation  like P and 1 minus P and most likely you will think of having a sigmoid 

there but a multinomial  case you can directly go using the software softmax not software 

softmax.  So I think of the softmax as an additional module that is coming in so you are 

still  free to do whatever you want prior to that whatever activation you want to use do not  

limit yourself to 0 to 1 or anything that can also this Yi hats can be so they can come  from 

a real number. So they can be whatever they are there is no constraint that they  have to be 

positive and all. 

 

 And then eventually you then kind of you know convert them to  a probability and then 

what happens is right so when you do this cross entropy loss rate  I mean you know we 

saw it we had like Yi log Yi hat right that is what we had summation  i going from the 

number of classes that was here that would be your cross entropy loss.  So this Yi which is 

actually the true label right see you have a network and let us say  right I pass the example 

of let us say a horse image right inside. Now my output vector right  the sort of a target 

vector that would be what suppose my let us say suppose this entry  is for horse which I 

will have to keep it as fixed right through all my experiments.  So what I will do I will 

make this as 1 and then kind of right reduce all of all the others  to 0 because I will say that 

you know this is actually a horse and therefore that particular  element so right this is going 

to be your Y okay and Y at some let us say kth entry  will have a 1 okay and therefore right 

when you when you do a cross entropy loss it will  do like this right. So what we will do is 

you will have like Yi log right I mean Yi  hat right summation over i. 

 

 So now what will happen is so such a vector so this is a target  is what you want ideally to 

be that is when you pass a horse you want your Y hat to look  like this you should have 0s 

everywhere except that in that one place whatever kth position  it should be 1 and then rest 

it may not happen right it will try to get there.  So when you compute the sigma Yi hat you 

may end up with the Y hat right so this is a target  so this is a target and what is being 

estimated is some Y hat right which is this Y1 hat Y2  hat and so on and this need not 

exactly look like Y but then it will try to get there because  that is what that is what right 

that is what we talked about earlier right for cross entropy  you know so you want this Yi 

hat to come as close as possible to Yi right and such a vector  is called actually a one hot 

vector okay. So a vector of this type is called a one hot  vector what it means is that only 

one element is really active right rest of the rest of  all or all 0s right so it is called a one 

hot vector so if you encounter one hot okay  you know do not so you should know that 



what is being meant right and therefore so I just  wanted to mention that talking about these 

losses for L of W right when you are talking  about the loss functions of the weight which 

is typically the original cost right that  we have been talking about till now it could be MSE 

it could be cross entropy whatever  it is but if it is cross entropy then very likely that you 

are dealing with a classification  problem or whatever a segmentation problem where you 

have got multiple classes and right  you could be you could be labeling every pixel or you 

could be labeling an entire images  whatever you know to know right to which class that 

particular object in the way that image  belongs so in that case remember that there will be 

a softmax right at the after the output  layer and then you convert everything to a probability 

okay.  Now see this I am just going to indicate an outline okay as to how one goes around 

so  the idea is that right by introducing this additional norm on the weight right so what  

you are actually effectively doing is so suppose I look at the gradient of L tilde omega 

because  right that is what I will have to now use right till now in my iterations I was using  

dou L by dou dou dou W now I will have to use dou you see L tilde by dou W because that  

is my new cost so if you look at this right this is going to be gradient of L W with respect  

to W plus you know last time it will be sorry it is going to be beta W everything is a vector  

here okay.  So now the argument right if we if I start deriving right it is going to take time 

but  it is a little tricky but not so tricky so what you have to do is you know you have to  do 

suppose let us say see what you want to what you want to understand is with respect  to 

this new cost function okay the new cost function if there is an optimum that let us  say 

what is the what is the symbol that I am using for that tilde W tilde okay if that  is what is 

the actual optimum that you get by actually minimizing L tilde omega and if  by actually 

minimizing the delta the L omega if you had L omega as your cost just L omega  as your 

cost and suppose you had omega star as the optimum for that okay then you want  to see 

how is omega tilde or W tilde related to related to W star right that is the idea  because 

something will change because of this additional factor which will get involved  when you 

when you use this new cost right. 

 

 Now the way the way right this is arrived  at is I will write the final expression but the 

approach is that you expand this guy in  terms of a Taylor series right in terms of a Taylor 

series which then which then means  that right so what you are what you are sort of looking 

at let us say suppose I call this  is U okay as a difference right so let us say this is this is W 

minus you see right  write W W star wherever I write W star is this optimum then what 

you can do is you can  actually look at the look at the you know Taylor series expansion of 

this guy W star  plus U okay and then if you try to if you try to write expand this then write 

what you  will get is you know L of C W star plus whatever right U transpose gradient of 

gradient of  L right with respect to with respect to this one right W star.  So let us just write 

this as a gradient okay gradient L and then plus you will have a half  right you will have U 

transpose and then H which is the Hessian of L this we have seen  before right I mean so 

this is the Hessian of L and then you will have U right something  like this is what you will 



have and what is and then because you know that at omega star  right this this guy is 0 right 

because right that is supposed to be the optimum right we  have assumed that is a W star is 

the optimum for say L omega right when you are actually  minimizing L omega therefore 

the second term drops out and then and then that what one  can sort of look at is really 

examine this H so the whole thing boils down to examining  H and you can show that H is 

actually a positive semi-definite matrix why because of the fact  that right I mean see if this 

quantity is 0 right and if you are already at actually  L omega star which is a minimum 

unless U transpose H U is actually greater than or equal to 0  right otherwise what will 

mean is you are not really at you know you are not at a local  minimum right you see that 

right see that argument that you know H has to be P S D because  if H is not a P S D then 

it means that L omega star is not really a local minimum right so  you see you have to use 

arguments like that in order to be able to arrive at the fact  that H is actually a P S D right 

under these assumptions and you can just write walk through  this a little bit if you walk 

through this I just leave it to you as an exercise right  just just show that okay and then 

what you have to do is you know use you know you know  do an eigenvalue eigenvector 

decomposition on H because now it is a P S D so if you do  an eigenvalue eigen 

decomposition on H then that can be like you know Q diagonal Q transpose  right we do 

not want to use Hermitian and also just say right Q diagonal you know Q  transpose and 

based upon this right and where where this does this contains the eigenvalues  of H right 

this is a diagonal matrix containing the eigenvalues of H so this eigenvalue eigenvector  

decomposition you are all familiar with right so if you use this argument then what you  

can effectively show just you know 3 4 steps down and you can actually show that your W  

tilde okay can then be shown as Q diagonal plus alpha no beta okay we have used beta  so 

beta I, I is an identity matrix inverse then diagonal Q transpose W star okay this  is what 

you will get that means the new weight W tilde by introducing the additional regularizing  

term which is norm of W right the L2 norm of W by introducing that effectively what  will 

happen is your W tilde your W star will change to W tilde so you can easily think  right 

away if I had forced my beta to be 0 then of course diagonal inverse diagonal is  identity 

Q Q transpose is identity and therefore you will be you will be back to say W star  but 

given that beta is not 0 right so what will happen is we will have a term like this  right and 

therefore right if you try to if you try to if you try to you know examine  entry wise so what 

this so the scaling is actually happening here okay the actual scaling  is happening here I 

mean so you know not just this so this diagonal also so what is happening  is Q transpose 

is acting so Q transpose is a matrix that is actually rotating omega star  and then after that 

there is a scaling going on and then after that there is a re-rotation  through Q so the actual 

scaling of weights is happening in that is in middle term right  which is this diagonal plus 

beta I inverse diagonal.  So we try to examine any one so in that sense right if you want to 

examine some ith entry  right then that is going to look like let us say lambda i by lambda 

i plus beta okay  that is the kind of scaling right right you know which is being applied and 

these lambda  i's are but the eigenvalues of H okay so what this means is and generally 



right you  know that eigenvalues actually right represent represent kind of variance right 

this is that  if there is a high spread right then you will have then along that along that along 

that  orientation which the eigenvector kind of see kind of see represents the eigenvalue  

sort of says that how large is that variance you guys are familiar with this right when  you 

do a PCA or something that what do you do I mean if you take a covariance matrix  you 

get the eigenvectors then when you want to get a principal eigenvectors what you do  you 

go and look at the look at the most significant eigenvalues because orientations you can 

have  in various ways but then which ones have the highest spread you start from the sigma 

that  your yeah the singular value or the eigenvalue whichever is the highest then you kind 

of  order them down right because because you are sort of thinking that the you know that  

you have a distribution that is most spread out in in the in let us say one particular  direction 

then next most spread out is in the other direction and so on right so in  the same way since 

lambda i's are kind of right you know so these lambda i's sort  of are signifying these 

importance and what this means is that if lambda i is actually  is actually pretty high then 

then you see beta and of course beta is actually a positive  number so it can be greater than 

it can be equal to 0 if you do not want the regularizing  term but when you are talking about 

regularization of course and it is a number greater than  0 then what you what you what 

you see is that right so so you see that the scaling rate  is almost equal to 1 for that for that 

particular weight which means that it is a fairly significant  sort of weight and then you do 

not want to sort of knock it off whereas if you have a  situation right when or where so the 

other situation when you have lambda i's right  like much less than much less than you see 

beta right I mean in which case this will  almost go down to 0 because I mean you have 

you have a beta right which is much much greater  than lambda i so this denominator is 

almost like beta and lambda m i by beta can go close  to 0 that means where the spread is 

really not much in which case that weight is probably  not even significant and you want 

to sort of you know you may not reduce it to 0 but  you have sort of right you know you 

are sort of alleviating its its importance right so  you sort of right bring it down so in a sense 

in a sense this happens automatically right  and the only control parameter sort of a hyper 

parameters is beta so so such things are called  hyper parameters ok so you had unknown 

parameters that you are anyway estimating so those are  learnable right in within a network 

always right keep in mind that there are things that  are learnable like the weights the biases 

and so on and there are things like this hyper  parameters and all which you do not call 

them as trainable or learnable so these have to  be figured out so you have to kind of say 

tinker with it so for a particular problem  a certain beta might work well and for another 

problem the same beta may not work therefore  these have to be arrived at by actually doing 

some you see brute force experiments ok there  is no easy way how to tell what will be a 

good value for let us say beta ok so this  beta is called a hyper parameter and these hyper 

parameters you will encounter often  in fact many things are hyper parameters even the 

number of layers that you use in actually  a neural network that is a hyper parameter nobody 

knows how many layers you need to use  and then what should be the what should be the 



right dimension all these are hyper parameters  so beta is a hyper parameter and and what 

you can also show is that what shows that  I mean effectively if I do the summation over 

over all the weights right I mean let us say  1 to n lambda i lambda i plus you see beta then 

this number right is much much much less  than actual n so so so so in effect right in effect 

it is like saying that it is a no  in effect it is like saying that you know instead of instead of 

dealing with with a  with a value like n right you can now deal with something much less 

than that but again  right what get a beta will work best depends upon the problem so you 

will have to look  at your final you know accuracy and then sort of right because you cannot 

arbitrarily make  this beta very high because if you make beta very high then the actual 

original cost rate  will lose its importance right so you cannot just arbitrarily make l 2 norm 

to be of the  weight to be the most important thing so you have to strike a right balance and 

that right  balance comes out of right this one ok experimentation ok.  So so this is about 

this is about regularization by imposing a regularizing term on the weights  you can also 

there is there is an interesting thing right which you can do which is not  very obvious 

another way to actually regularize is through is through noise injection is through  noise is 

injection ok this is also again one more way to actually you know to bring in  a 

regularization which which again means that you know something like this kind of you 

know  well you can actually show that you know this is I mean like this ok let us just show 

this  so for example right so what this means is that it is ok so so you have so suppose let  

us say right I have an output suppose y right which is I mean right at some layer right  I am 

writing so this is let us say summation let us say right I mean the final output layer  or 

something and then I have like summation w i ok I mean at some layer x i plus now what  

I would normally I have had is w i x i but now right I am going to add noise to the my  

input so this noise injection is to the input ok if I actually inject noise so this is e  i ok by 

the way and e i is let us say Gaussian with some with 0 mean and right sigma variance  ok 

let us call this as y noisy so this y original right would have been just the summation w  i x 

i right is what I would have done but the fact that I am injecting noise into x  i means that 

effectively what I what I will then see is not the original y but then over  then y noisy and 

this y noisy right you can just expand it so that will become this all  over i ok and and i will 

be like you know the right number of number of number of terms  that you have and this 

will be like summation w i x i plus w i e i and w i x i we know is  y therefore y noisy is y 

plus let us say summation over i w i e i and and my have what I have  a target right let us 

say and of course this noise injection this is only for an MSE loss  ok this regularization is 

for MSE loss ok so ok acts as a regularizer I mean injection  of noise into the input acts as 

a regularizer provided the loss is MSE ok acts as a regularizer  for MSE loss noise injection 

ok I mean I think I should write this here noise acts as a regularizer  for MSE loss ok. Now 

if my if my final sort of a target value  is t and if my target value is t right I mean that is 

that is what I that is what I actually  want then what you can what you can kind of look at 

is the expectation of y noisy minus  t square right I mean if you if you write so instead of 

y minus t the whole square and  now what you have is really y noisy minus minus t the 



whole square it is what you have. 

 

  So then we can just substitute for y noisy right into this that will be like y plus summation  

w i e i minus t the whole square and then this will be like expectation I can just rearrange  

this put this as y minus t plus summation w i e i square right and this we can write  as and 

if ok let us just assume that y and and t are both deterministic I mean if not  then of course, 

you will have to use an expectation there also ok nothing nothing great will change,  but 

let us say just to make matter simple if you assume that y and the and t are both  see right 

deterministic then this will become simply y minus t the whole square if it is  not then you 

will replace it with expectation y minus t the whole square and then this if  you expand 

right if you. So, because you are assuming that you know  e i is 0 mean therefore, that 

product term goes away and because you are also you are  also assuming them to be them 

to be uncorrelated right therefore, what will happen is you will  have the summation w i 

square ok and then expectation e i square or in other words should  be this we can simply 

write this as sigma square right which is the which is variance  right this is over i. So, now, 

if you kind of look at this term right  this is like this is like you know norm on norm on the 

weight right and of course, you  know it is being scaled by the by this noise variance if you 

if you make sigma to be 1  then it will be you know summation w i square which is exactly 

what you had earlier and  you had this is it right l 2 norm on c w right.  So, what this is 

effectively saying is that another way to regularize that means right  you want to sort of 

bring in bring in an action or begin a regularization term on the weight  that is by actually 

adding noise to the input and that you can and for an MSC loss if you  can effectively show 

that is equivalent to doing a regularize you know l 2 regularization  on the weight ok. So, 

all these are tricks that let us say right people play it is not  like right everything is done, 

but depending on problem to problem right people try various  things, but these are all 

things that one can try. 


