
Modern Computer Vision 

Prof. A.N. Rajagopalan 

Department of Electrical Engineering 

IIT Madras 

Lecture-16 

  So, last class right we saw back propagation right and we saw that you know you could 

have  deep you could have a deep network and still be able to propagate right do propagate 

the  error backwards and then update the weights update the bias and all that we saw the 

matrix  vector form for doing that.  Now, there is just one thing that that I that I think I 

would want to tell which is about  about you know see we have not yet said you know said 

anything about how we how we take  these samples.  So, for example, you know.  So, for 

example, in the in the last one that we had I mean it was I think what was it it  was just a 

mean square error kind of thing right.  So, we had like summation y i hat minus y i square 

and then we said i going from 1 to  2 and then we scaled it by half right.  Now, ideally right 

you would have several samples right think of a case where you have  images and you want 

to denoise them. 

 

  So, y i will be like one image right and then y i hat will be your estimated image and then  

you want to find out the mean find out you know sort of the even square error right between  

the two and, but then you would have to do it over several examples right you cannot  learn 

with just one example or something.  So, normally what happens is you will have 

something like y i hat minus y i square and  then let us say right i going from 1 to m and 

then you can have another summation where  let us say where let us say right I mean you 

know.  So, we can say maybe right y i j and then y i j where let us say j is the j is the j  is 

the right you know sort of example number.  So, you can have like j is equal to 1 to some 

some right l number of examples and right  I mean basically what you might have to do is 

do is for every example right you might  want to and then you might want to scale this by 

you know 1 by l m or something right and  you would want to want to make sure that over 

all the examples you get eventually an error  which is which is small enough right. 

 

  Now, it could be may it could be whatever it could be one dimensional it could be even  

speech data whatever it is right. So, what you do is you take. So, in a sense right you  might 

think that what probably we will do is you know we will push all the examples  and then 

right before we even do a gradient update we would want to compute this cost  over all the 

examples and then one then once you have once you have once you have accumulated  

right that kind of an error then we will then we will update.  But then what happens is that 

becomes you know too slow a process because of the fact  that you know you may have a 

http://www.ee.iitm.ac.in/
http://www.iitm.ac.in/


million examples for example right and you know you would have  to first of all you know 

push all of them through and then because of the fact that  right you have got so many 

examples out there even the you see is right movement is not  no no will not be fast enough. 

So, the so there are kind of right 3 ways of doing gradient  descent only one is typically 

followed, but then I just thought right I will just talk  about talk about it all 3 of them right 

what they are. 

 

  This we could have done before, but right at that time I left it, but I think right  now we 

will just take one you know quick look at that. So, let us look at the first one  right which 

we call batch GD right. So, this batch gradient descent is like batch GD is  like no. So, the 

entire training set the entire training set it is used in each you know iteration  and that means 

before you even update. So, always right let us kind of go back to  that you know to that 

update equation which is like whatever you know your theta t plus  1 or n plus 1 whatever 

you had is equal to theta t minus alpha let us say gradient of  gradient of L dou L theta with 

respect to theta evaluated theta equal to theta 2 right. 

 

  This is this is always the case, but now, but now it looks like right this this update  which 

we are going to do theta could have both your weights and the bias. So, the update  right in 

batch GD what will happen is you will have to you will actually compute this  L theta right 

here is your L theta for example right this is your L theta. So, you compute  your L theta 

over all the examples okay, but then right this is not this is not you see  right normally 

followed because it is just you see right I mean even kind of what is  a computationally you 

have to do it over a million examples before you even you know  right make the first update. 

And the you know second thing is storage,  memory and also the fact that you do not you 

do not want the movement to be so slow. The  other extreme right that you can do is what 

is called a stochastic gradient descent or  SGD what is called a stochastic gradient descent. 

 

 Of course, you know this is also come to be  I will tell you that I mean so right now just 

kind of take it for granted that we call the  stochastic gradient descent or SGD and you 

know so right here it is the other extreme.  So here the weights are updated, the weights are 

updated, updated means every right iteration  whenever we say update we mean after the 

iteration, after computing gradients for every training  sample, after computing gradients 

for every training sample. That means you know so in  this equation you will probably take 

this one example right compute the error and then  update the weights right that will be like 

you have to say right iteration.  But then this is this is too oscillatory because every example 

right will try to will try to  know take you from here to there and then right you would not 

have sort of you know  a direction because one guy will swing it one way another example 

will swing it the  other way. So really this extreme is not something right that you would 

want to use but yeah  I mean right nothing stops you from doing it. 

 



  The weights are updated after computing gradients for each training example, for each 

training  example. So the drawback of the first one is that is that it is too heavy right in the  

sense that the right inertia is too high. So this is kind of slow okay. This can give  so no 

kind of rate I mean what do you say random courtesy directions right because the  fact that 

every example will try to will try to swing it in a sort of a different direction.  So again 

right not the one that is typically used. 

 

 So you would not use this typically  right in any of your implementations not use this 

typically what you use is what is called  you know mini batch, mini batch GD gradient 

descent okay and this is what we normally  use and in mini batch right what we do is so 

for example if you had a basket of examples  they would then you would actually right 

break them down into these batches what is called  a mini batch and then you would do 

this loss computation over a batch.  So for example right suppose let us say suppose you 

had not that L right suppose you had done  L examples and you take M examples in a batch 

right then the mini batches will be like you  say L by M and you traverse of course the 

whole training set right you do not leave  any example out. You traverse through the whole 

training set but at a time you take  a mini batch of example you can pick the mini batch 

randomly okay within I mean it is not  like you know you have to go in a particular order 

you can but you make sure that you traverse  all the all the examples right and within so 

you take a mini batch and compute this  L theta for that batch. So this L right that I wrote 

here so that  can be that is not that L okay this L is well maybe you can use some other 

some other L  I mean if you wish so this L and that L are not the same okay or if you want 

to treat  L as the L as the number of training samples that you are using okay then yeah that 

is  what I have used there for so this L I will just make this as N or something right where  

where N is the total number of training samples and N by M will be the will be the number  

of mini batches right. So this will be the number of mini batches  and M is M is the M is 

the number of examples in one batch in one sort of you know mini  batch right. 

 

 So therefore M mini so over M examples you will compute the error then you  will update 

the gradient then you will again write I mean you know then you sort of write  you know 

do this in an iterative manner. So of course you know many people refer to  this mini batch 

GD also says GD okay but strictly speaking one should be using it as mini batch  mini 

batch gradient descent okay yeah. So right this is just an aside but just to know  that you 

know when because from now on that iterations we will we will keep kind of see  talking 

about iteration iteration and so on and therefore when you look at this L theta  right so you 

should know that when we talk about an iteration we are we are really really  referring to 

this mini batch sort of a gradient descent which means that not all the examples  are 

involved okay. In an iteration there is only a mini batch  of examples involved and when 

you actually when you actually cover cover all the examples  right so that is called an epoch 

right. One one epoch is like when you have all the training  samples covered so that is so 



right so now that is like one epoch and normally these  networks take several such such as 

epochs to to to actually train in the sense that  for you know convergence to occur it is not 

like with one epoch right you will be able  to attain convergence you will typically require 

several epochs and that is where all your  computations and all come in right whether you 

have a good processor and so on how much  time you have to wait right till you start 

observing things and so on. 

 

  But there are whether certain you see tricks right which you have to do in order to in  order 

to make things move faster okay that is that is the part on this optimization right  so what 

basically people do is they do not simply use gradient descent in this form okay  this is the 

most kind of you know you know sort of simplest this is the simplest form  for a gradient 

descent but what is typically used is not is not is not this form.  So what you do is you know 

you actually introduce certain things right what are all the things  okay which you would 

want to do one is for example can you sort of write accelerate in  the sense that you know 

if you have if you know that you know your slope is rather let  us say what do you say you 

know very shallow right if you have a very very very or it is  almost like a flat region right.  

Now why would you want to write inch at the same rate right I mean when you when you 

can  when you anticipate right that there is that the slope is really less then you could 

actually  accelerate the way you the way you can move forward right I mean it is like saying 

that  I know that that this is a flat terrain so I need not take one small small step to get  there 

right I might just want to accelerate.  But then it should be such that it is not just applicable 

for a flat terrain it should  be applicable even in general so that if I can use a past history in 

order to move forward  faster I should be able to use that right.  So so this so that is called 

a momentum based sort of a GD where a momentum is applied so  when you when you 

take the step size right there is accompanying with that there is also  over know a 

momentum which you give so that if you are if you are if you are is the previous  sort of a 

direction and the correct direction are actually aligned right then then you would  take a 

step you know where the previous guy will help you move forward faster right I  mean it 

is like saying that if I if it is like saying that if I had if I had a vector  in the original direction 

which was like this and if what I am you see computing now if  it is also right in the same 

direction then if I add the two right I will go faster forward  and and it makes sense right. 

 

  But only thing is when you come near the basin you could have problems okay that we 

will  talk about but but but generally right it is a smart idea to actually use this is a  

momentum to actually to actually right push yourself forward.  The other thing is this alpha 

itself right which is sitting there I mean so we said that  is a step size right.  Now this alpha 

is also something which you can optimize and so when we say optimization  we really 

mean tricks that you can employ right in order to have a faster way to kind  of get there 

because otherwise all these things right can be can really slow you down okay  so so the 

and these are not that old by the way okay in fact some of these things are  as recent as 



2012 and 14 and so on so that way in terms of history right it is not like  you know like 20 

years old or something and most of them are actually used okay.  So the other thing is about 

the learning rate so this alpha is also called the called the  you know learning rate right.  So 

so the idea is that should you use the same learning rate you know or for or you  know or 

for example you know should we have so for example right I mean if you have because  in 

this case theta is actually a vector right. 

 

  So so the so the idea is that right can I kind of can I get a fine tune my alpha such  that 

right but you know for for let us say right certain certain elements right I mean  I can move 

faster and for certain right I should not and so on.  So this alpha also right does not have to 

be fixed okay and alpha is alpha as a learning  factor right you can also you know tune your 

alpha okay.  So so the idea is that right these are the two things that are mainly done with 

respect  to optimization right and you know which we will walk through now and then and 

then there  are say other aspects which is like you know regularization that we will talk 

about later.  Regularization is all about you know do being able to being able to you know 

make a network  you learn beyond the training examples that you have learned that means 

avoid sort of  overfitting and the other idea behind regularization is that is like you know 

having a less complex  network like I totally read what was what was that to say razor 

Occam's razor right.  So that said that you know among multiple competing hypothesis 

pick the one that that  is the most simplest rate and actually explains the this one situation. 

 

  So in the same way right if you just allow your weights to be whatever they can be right  

then what can happen is all your weights can come on and then you will have a bloated 

network  right where all weights seem to be active and then you would actually be right 

overfitting  and I mean it is like saying that right I mean you know everyone you want them 

to work  instead of that you might say that you might want to have a lean network where 

you say  that I mean you know let me not have all weights act I mean you should have a 

constraint of  the weight that you should not just right let it be unconstrained.  Then then 

actually what you can do is you know then you can actually regularize in the  sense that 

you can have a you can have a network wherein wherein you know the weights come  up 

when they have to right otherwise otherwise that they should not okay.  So so optimization 

and regularization these are these are two two things right which which  we should be 

aware of okay and I am I hope that we will be able to complete both of them  today okay.  

So the first one let me talk about momentum based momentum based GD gradient descent 

okay.  So this momentum based GD looks like this so the weight update equation right 

becomes  something like this. 

 

  So the weight update becomes so I will first write this right then I will explain what  it 

means so V T is equal to let us say some gamma V T minus 1 plus alpha this alpha is  the 

same alpha and then gradient L theta theta equal to C theta T and the actual update is  like 



theta T plus 1 is equal to theta T minus V T.  So if you see right I mean earlier earlier all 

that you had had was this term if you  just replace V T right earlier what you had was this 

alpha this one gradient of L theta  but now you have this additional extra term right which 

is which is this gamma V T minus  1 and V T minus 1 in turn would have come from V T 

minus 2 and then you know a gradient  of L theta at that at that at that particular iteration 

right which will be like theta equal  to theta T minus 1 and so on.  So the hope is that hope 

is that right when you are actually traversing okay right down  the curve instead of instead 

of taking small small steps and trying to trying to get down  to this base in so the idea is 

that if you were to add a momentum right this factor is  actually a momentum momentum. 

So the idea is that if let us say V T minus 1 and this  this gradient at the this one the current 

sort of a time step right if they are actually  both you know mutually aligned right then then 

you would want to sort of add that factor  in right in order to be able to able to move 

forward.  Whereas gamma is a number that is typically between 0 0 to 1 okay typically you 

do not  use 1. 

 

 So the idea is that you know it is like so it is like right giving an exponentially  decaying 

weightage to the past V T's and as you can see right if you try to write you  know if you 

start with V 0 and let us say you write V 0 is 0 and then we have like V  1 as whatever 

right. So V 1 will be a gamma V 0 plus something but that term drops off  you just have 

the right hand term then when you go to V 2 right you will get you will  get like right 

gamma V 1 and then and then like gamma V 1 will then actually multiply.  So you will see 

that you will have like gamma square gamma cube and so on it for the past  guys. So it is 

like you know exponentially because right when you are here right you  would not want to 

want to give too much importance to what was what was what is this direction  right I mean 

you know several steps before right. So it is like so this is actually an  exponentially 

decaying exponentially decaying average right exponentially decaying average  which 

actually helps you decaying average averaging right is what you are doing. 

 

  What you are doing is an exponentially weighted you know exponentially decaying 

average. So  that so that the right immediate ones take you know take more you know are 

more get us  irrelevant in order to move forward and then the past ones right have you 

know relatively  less role to play and the and the idea is that see the only problem right 

with this  that I mean this looks like actually meaningful thing to do right because it is like 

saying  like I said right I mean even if you even if they let us say right two are not exactly  

aligned still still it is ok I mean you know, but there is a two are exactly aligned like  in a 

flat surface or something right then you could really move you know much faster.  In fact 

I mean you could add up all the all the right earlier steps and really move forward.  But the 

thing is right the only problem is somewhere here right when you actually when  you 

actually come near the which you do not know right a priori. So if you are if you  are 

coming closer to the kind of minima then then you see what could happen is you could  you 



could actually you could actually write overshoot I mean because of the fact that  you know 

you have you have a previous gamma right Vd minus 1 which are going to add to  this and 

therefore right what is typically for again that these are all observations  right. 

 

 So so when this momentum based Gd was implemented  people found that there are 

oscillations when you come when you come right near the minimum.  But otherwise you 

are very fast I mean that means you are able to do your job in much  fewer iterations. It is 

also about how fast you get there right. So it is also about involving  fewer number of 

iterations at the end of the day right. This momentum what will it do it  will right you know 

iterations will become fewer because you are moving faster right. 

 

  I mean you are taking larger steps right in a sense instead of taking a baby steps you  are 

taking larger steps to get there and therefore right you expect that in fewer iterations  you 

will get to where you want to be. But the only thing is right when you are kind  of when 

you are kind of hitting when you are when you are closer to the minimum. So there  is a 

right it can have it can you know so so it is what do you say it is known to exhibit.  So this 

is known to exhibit oscillatory behavior known to exhibit oscillations or oscillatory  

behavior near the minima near minima or minimum. And but but then the then the point is 

right  it is actually used. 

 

 There is a variation of this that actually people use which is  called a Nesterov momentum. 

I will just I will just hint as to what it is because like  I said it I mean is there anything else 

that I have to write here.  So I think let me just write that when v t minus 1 and delta l theta 

at theta equal to  theta t are well aligned well aligned you get an you get you get added 

momentum momentum  that is why it is called momentum based to well to move faster to 

move faster. And this  is mainly useful in useful in regions with with shallow slopes 

because right that is  when that is when you need to go faster because people write flat 

regions and so on it is  not just to say right it is not that only for flat regions it is useful 

whenever you  have whenever right I mean otherwise otherwise you will have a gradient 

which is very small  and therefore your alpha if it is fixed for some reason actually it is not 

fixed then  if you fix it then your step size is become really small right.  So instead of that 

you could just use a previous history right it is like using history to  history to accelerate 

because you know that that is how you came and therefore it makes  sense to use your past 

history. 

 

 Nesterov momentum this goes after a person's name by the way  and do I have the year I 

do not I do not know whether I have the year for this one Nesterov  1983 guy his name is 

some Urey Nesterov. So this is 1983 work yeah this is old, but there  is another thing, but 

as there are several other things which are relatively new. So  here right what what all that 

he suggests is because of the fact that right you you  anyway you know plan to actually 



make that step forward which is gamma b t minus 1. So  his idea is that instead of actually 

evaluating the gradient at theta t evaluated evaluated  at theta t minus gamma b t minus 1 

because you are you are anyway you are anyway right  making that step forward right this 

is already embedded in your distant momentum.  Therefore his idea so to sort of what to 

say so to explain this right in a sense right  what it actually means is that especially right if 

you are okay let us let us kind of  go back to this figure right. 

 

 So what this means is that if you are actually let me choose  a different color. So what this 

means is that if you are here right and then let us say  right this is your a point and from 

there right you came down to b okay and then and  then let us say right you came to c. Now 

now c is where you are you are sort of I mean  a and b were okay you are still far away 

from from the from the you know minimum, but at  c right you are you are sort of c close. 

Now this is like you know look ahead right  you know look before you leap kind of thing 

okay that is what that is what that is what  is effectively means look before you leap or look 

ahead prior to leaping look before  you leap right. So what this means is that so for example 

if I if I had gone the usual  way right what basically might have happened is you know I 

would have actually incurred  a incurred a large step and sort of right ended up here. 

 

  Let us say right here is where I end up if I if I do not use an Esterov kind of a kind  of a 

thing right because all that I do is I have a gamma v t minus 1, but then but then  my step 

size becomes so large right that I actually you know end up on the other side.  So by saying 

looking ahead right what they what this let me write down that equation  so there is changes 

in the following way. So instead of so there is only one change  right so v t is equal to theta 

so this all remains the same gamma v t minus 1 plus alpha  this is like gradient l theta 

except that theta becomes equal to theta t minus what  is that gamma v t minus 1 right. So 

so then what this is saying is right so  you can actually go ahead and sense as to right what 

is what is happening at theta t  minus gamma gamma v t minus 1 and if there if the slope 

is already changed right then  what will happen is when you do when you when you when 

you kind of estimate your new v t  right that will actually be a reduced step size right 

because because the sign has changed  right otherwise you would have left forward to 

actually d right.  See it does not mean that you do not cross over the minima ok that need 

not I mean there  is no guarantee that that for example right when you would always I mean 

see the thing  is you want to avoid this jump right you want to make the jump shorter so 

that you do not  end up oscillating ok. 

 

 There is no guarantee that with this right you will always you will  always end up like this 

but then if you jump you will jump much less for example, you will  jump to e and not to 

d because of the fact that there is already a change in the sign  and that sign change will 

reduce the step size which you eventually take right whereas  without that knowledge you 

would have already made a made a kind of big big step size I  mean you understand 



intuitively right what this means right.  So, it is like saying that if I had known that well 

my sign had already changed there  I mean then maybe I would have actually you know 

taken a smaller step where would have  gone all the way to d right I would have probably 

reduced my step size right and that is the  idea ok. So, so, so, so, so if you actually 

implement this right people have found that  the number of oscillations that you get are get 

are far fewer because because it actually  helps you know right a priori that that you should 

not have taken a large step and this  is mainly mainly useful when you are actually near 

near a local minimum the rest of the  places it does not really matter ok. But then when you 

are near a local minimum  it will help you prevent you know undergoing too many 

oscillations because oscillations  then it means you know more iterations and spending 

more time right getting there you  will get there eventually but then you know unless of 

course you know you make steps like  the one that I showed last time that you simply go 

off the off the cliff right. 

 

  Yeah. So, I am not writing the explanation at all, but I hope right you have actually  

understood what this what this means ok and this sometimes also called NAG ok it is called  

Nesterov accelerated gradient ok. So, some people call this as NAG which is Nesterov  

accelerated gradient accelerated gradient this is some 83 work.  Then the next thing right 

that that we should that I thought we should look at this this  alpha guy itself. So, as far as 

the momentum is concerned right these are the two main  things that that one should be 

aware about. 


