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  So, let us kind of look at dou L, you know what have what are we indicating this by,  so 

here if you see right, so we are calling it as B i L right at any L th layer. So, some  suppose 

I take B i 3 ok, let me say that right I need dou B i 3 ok. Now, dou L by dou B i  3, so what 

is your what is your L now, so L you had as let us just go and look at what  your L was can 

you can somebody tell me what was it. So, L L was 1 by 2 summation Y i hat  minus Y i 

square right this is what you had and therefore, what will happen.  So, if you do dou L by 

dou B i 3 right, so this will become, so 2 will cancel off we  will get Y i hat minus Y i and 

then you will get dou Y i hat by dou B i 3 ok. And Y i hat  is nothing but ok, but there is I 

think a simpler form let me just see ok, sometimes  right people kind of get away with a 

simple form, but let us see. 

 

 So, Y i hat is what  Y i hat is A i of what is it just go back to that figure Y i hat is A i 4 

right. So,  Y i hat is A i 1 minute that is see that is the notation we use know A i 4 know. 

So, A  i 4 and A i 4 itself yeah, so A i 4 itself yeah I think. So, what you do is right you  

play this trick that well it is simple right. 

 

 So, what you do is you write this as dou A  i 4 by dou Z i 4 yeah right and then you write 

this as dou Z i 4 by because you need a direct  relation between Z i and B i right. So, you 

write this as dou B i 3 because I mean eventually  you want this with respect to B i 3 right 

this is what you want, but Y i hat is A i  4 and A i 4 I mean and your relation is with B i 3 

is directly related to Z i 4 right.  I mean that comes from that equation right Z i 4 is in terms 

of W i j 3's and B i 3's  right and therefore, right what happens. So, this is nothing, but F 

dash of Z i 4 and Z  i 4 right is in terms of there is just an addition right plus B i 3 therefore, 

that  will be just 1 right this last term is just 1 and therefore, right. So, you can sort of  write 

this dou L by dou B i 3 right to be equal to Y hat minus Y i and then dou Y i  hat by dou B 

i 3 which is F dash of Z 4 Z i 4. 

 

  So, again right this is something that you can evaluate right which means that which  

means that you can change your B i 3. So, how will you change your B i 3? You will say  

that B i 3 right in the next iteration right and the next iteration will be B i 3 old and  then 

minus some step size times dou L by dou B i 3 that is how you will use this right  this 

gradient right in order to update. So, you just have to go back to that to the gradient  descent 
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right. So, theta n plus 1 is equal to theta n minus alpha times dou L by dou  theta evaluated 

at theta equal to theta n right this is how this is that equation. So,  just that theta can be 

weight theta can be bias and that the it is the gradient that  you need to be able to evaluate 

and theta equal to theta it means that whatever was  whatever is the current value of B that 

you have for you know within the say network plug  that in. 

 

 Once you plug that in you will get values  for all of this and which will then mean that this 

will be finally, a number for you right  and that you multiply and then you update your B i 

right and then this is how you you  look but of course, you know there are there are certain 

things like you know how you do  the training and so on it is not like you push all the 

examples at one go okay.  So, that we will come to okay once once we get there but for the 

time being right it  is just enough that in that we understand this now let us just look at 

what do you.  So, yeah so I think this let us just fill this up here it is Y i hat minus Y i F 

dash  of Z i 4 what about let us say we also need dou L by dou B i 2 okay and dou L by 

dou okay  well 1 minute right. So, see I told you right so yeah so there is there is actually 

a simpler  form see okay right this is also correct that is why I said it is no there is no unique  

way to do this but then right look at the simpler form there because you want everything  

in terms of this right delta. So, what you do is you do write this is dou  L by dou Z i 4 to 

dou Z i 4 I thought that there was a simpler form dou B i 3. 

 

 So, you  go back to the diagram right. So, you see looking at looking at right dou L by dou 

L  by you see dou B i 3 right and it is simply dou L by dou Z i 4 right into dou Z i 4 by  dou 

dou you see right right B i 3 and..  Yeah exactly no the point is that what I am saying is 

you do this because you want everything  in terms of the delta I mean the other thing is 

also correct there is nothing wrong with  that I mean that is the way I would impulsively 

proceed but then the whole idea is that you  want to boil everything down to a delta rule 

right. So, what you do is instead of so this  is correct but then this is not what you actually 

do right. 

 

  So, what you do is this and this you know is right delta i 4 and this you saw here right  

dou dou Z i 4 by dou B i 3 was 1 and therefore, it is simply delta i 4 and this you can apply  

everywhere right even at see B i 2 also see if I do dou L by dou B i 2 right I can come  

straight away from this right. So, if I want let us say B i 2 then what will I do I will  say I 

will say dou L by dou Z i 3 and dou Z i 3 by into dou Z i 3 by dou by dou C B  i 2 right 

which then means that I will again write say delta whatever right.  So, I will get you know 

delta 3 and then the other term is again 1 and therefore, right  in general. So, in general 

right what you have is dou L by dou B i L will then be what  dou i L plus 1 see right we do 

this one. So, that you know we know as to how this works  ok that is all I mean not that 

right not that you know this is when during implementation  only you do this but I thought 

it is worth right doing it just once ok. 



 

 So, you have  like dou i dou i L plus 1 ok that is for dou L by dou B i L.  Now let us I 

thought we will also do maybe the matrix form of this. So, which one shall  we do first. So, 

we have this equation right what do you have you have delta i where is  that delta i L it is 

equal to summation j is equal to 1 to some what is we write as  L plus 1 then we wrote delta 

j L plus 1 and what is that W j i L and then into f dash  of Z i of L right this is what you 

had know. So, now suppose you wanted to suppose you  wanted to find out right delta 1 

let us say 3 ok I mean I am just doing it for just one  case ok. 

 

 Suppose you wanted to wanted to do it for  you know delta 1 3 that means you go back to 

this diagram always right always you know  keep this in mind therefore right you are kind 

of looking at this delta 1 3 because  assuming that you know delta 4 we already know ok. 

So, then i equal to 1 right and therefore,  so how many how many neurons here right. So, 

your summation will go from j equal to 1 to  2 you are going to the fourth layer right L plus 

1 therefore, 2 right you are going  to 1 to 2 and then delta j ok. So, then right what will 

what will this be  like. So, right let me just write this down delta 1 3 is equal to summation 

j equal to  1 to 2 right 1 to 2 and then you will have delta j L plus 1 is 4 right and then W 

then  you have j and then I am looking at i 1 then L is 3 and then F dash of Z i is 1 L is 3  

and therefore, if I expand this what will you get you get delta 1 4 all these are scalars  ok. 

 

 So, therefore, it is ok to multiply whichever  in whichever order ok. So, W 1 1 3 plus just 

let us put in a bracket plus delta 2 4 W 2  1 3 into F dash of Z 1 of 3 correct. Now, if you 

try to do what try to write down I  mean write. So, also how many how many do we have 

like this delta in the I mean third  layer you got 1 2 3 right therefore, therefore, let us also 

write the next one. So, can we  write you know delta 2 3 what do you think what do you 

think right that will be can somebody  tell quickly delta 2 3 will be delta 1 4 W 2 1 3 plus 

delta 2 4 W 2 2 3 right into F  dash of Z 2 3 right and then we can have delta 3 delta sorry 

what happened the delta j equal  to 1 to 2 j is 2 oh no no 1 minute 1 minute I think no no 

ok no this should be other way  ok W i is 2 right therefore, this will become W 1 2 3 and 

this will become W 2 2 3 correct  because j i you know. 

 

 So, so see j is inside. So, j is summing over  1 and 2 that is standard, but i is what is 

changing right from here to here what is changed  is i therefore, it will become W W 1 2 3 

and then W 2 2 3 this is right and then and then  what will happen to you know delta 3 3 

going in the same way we will have delta 1 4 and  then j is 1 first and then 1 3 3 plus delta 

2 4 W 2 3 3 into F dash of Z 3 3 right I mean  this just follow right whatever we have done. 

So, what this means is that right I mean you  know I could actually update the whole thing 

right together I mean if I mean I could actually  instead of writing them you know 

individually like this what I could do is I could actually  think about writing this as a vector 

right where I have because each of these is a number  right. So, delta 1 3 delta 2 3 and then 



let me say  I have delta 3 3 and therefore, right I need I need this to express in terms of a 

matrix  and then right see if you go back and then see right what are what are the terms 

right.  So, what are the terms that you have you have actually delta 1 4 and you see right 

delta  2 4 right. 

 

 So, let us say I have delta 1 4 and delta 2 4 and and then right you should  have have and 

you see element wise a multiplication because this is a vector see here here everything  is 

is a scalar multiplication right. This is tricky see here right. So, what you  have is into F 

dash into into F dash of Z 2 right. So, it is equivalent to getting this  matrix vector product 

get a get a vector and multiply it right element wise multiply the  two vectors element wise. 

So, what will that mean? So, see so your first. 

 

 So, you have  like what delta 1 3 should be w 1 1 3 w 2 3 ok w 1 1 3 delta ok. So, so what 

will be  the first two entries w 1 3 and w 2 1 3 right this will be the first two first two entries  

right w 1 1 3 w 2 1 3 what is the what is the next guy delta 2 3 is w 1 2 and w 2 2  3 yeah 

w 1 2 3 w 2 2 3 and then this will be w 1 3 3 w 2 3 3 right and here you will  have a vector. 

So, this is this is element wise multiplication  ok this is element wise multiplication and 

this will be like what is it what was that  F dash of Z i Z 1 3 Z 2 3 and Z 3 3 right. So, then 

so see the the standard notation  for for a for a weight matrix right let us say suppose I call 

this is w 3 I mean in that  layer right this is we are looking at the third right we are looking 

del equal to 3  you know. So, this standard notation would have been like w 1 1 3 w 1 2 3 

w 1 3 3 this  is how you would write it in a standard form like w 2 1 3 w 2 2 3 wait a minute 

w 2 2 3  and then w 2 3 3 this is how you would have written. 

 

  Therefore right you can think of the matrix above as a kind of a transpose of this right.  

So, this is like 3 cross 2 this is how you would have written the standard weight matrix  and 

all your unknowns are these w's ok. So, so then write this if I call as delta  3 as a vector 

right then I have like delta 3 right is equal to w 3 I will write this  as a transpose right w 3 

transpose and then multiplying and and this multiplication is  as a standard matrix vector 

multiplication ok not element wise.  And then I can write this as this is kind of what will 

this be delta 2 right this sorry  delta 4 this is like delta 4 see this is delta 4 this is in the 

fourth layer and then you  can just think of this as one vector that you get by multiplying 

and then you have this  one I think let us call this as f dash of what is this z 3.  And all the 

all all these places we have to know as to what it contains right I mean that  let us let us 

assume that we know how many elements are sitting there and you know and  the and the 

size and all right the dimensions and all are all correct right. 

 

 So, so in a  way right so in general ok this I will just leave it to you right I mean you can 

do it  for any layer for that matter. So, we can write this as delta L right. So,  we can write 

this as w L transpose delta L plus 1 right and the whole thing into f dash  of z L right. So, 



so in a way write in one shot you know because finally, write during  implementation all 

people always like to have a matrix vector form because so in one shot  right when you can 

get you can get at everything out.  It is all one and the same, but you know sometimes 

implementation wise write it matters I mean  how you how you write these things right. 

 

 So, therefore, this is this is a this is a  matrix vector form ok and this called you see right 

delta delta learning rule and the  word back you know propagation right when you say back 

propagation say what you really  mean is. So, the so let me let me just give you the exact 

ok somebody said right that  day that this came in 1986 right. So, the exact this is the 

principle right  let me just write down when somebody ask you what exactly I mean this is 

all the math part,  but what exactly I trying to do is a principled method ok involving chain 

rule as you saw  to update the weights and the biases ok. When they say weights I mean 

the biases also to  update the weights by back propagating the error by back propagating 

the error. So, that  is how the network error reduces error reduces right this in a sense is 

what is you know  this the kind of summary of what actually back propagation is all about 

and how you  implement right is what we have seen ok. 

 

 Then I will just leave it to you as an as  maybe right as an exercise or maybe right we will 

just we will just find out right right  right. So, what do you think some of these are pretty 

straight forward what do you think  I mean if I had let us say what do I have here dou J dou 

L by dou B L where B L is again  right I mean. So, if you were to stack the B i L straight  

at that at that place right as a vector what do you think this should be equal to we already  

saw know what was delta L delta L or L plus 1 no is it L plus 1 no delta L plus 1 not  delta 

L delta L plus 1, but as a this one vector ok. So, the bias part right is very  simple if you 

write it in a in a vector form I will just leave this to you right as a small  exercise ok. 

 

 Let me just ask you know. So, how would you  write let us say W let me see right 

somebody would be able to answer this let us say dou  J by dou C W what do I have here 

ok alright. So, for this example it is a that we had suppose  I did dou J by C right dou C W 

3 ok. Let me just write down. So, what do you what I mean  I will just write down this 

expression right which you have already found out by the way  right. So, W i J 3 was 

actually delta i 4 a J 3 right this is what we had know right  I mean no no right in the start 

right when we did dou J by dou dou W i J 3 we got delta  i 4 right a J 3 and therefore, right 

I mean if I try to see dou J by dou C W 1 1 3 again  right depending upon what my i and J 

are running from let me just write down i is running from  1 to 2 j is running from 1 to 3 in 

this case for that layer that is how it is running. 

 

  Therefore, you will have a overall 6 terms right W 1 1 3 W 1 2 3 W whatever right for  

the for the i j combinations and therefore, right if you had to write it down and dou  J by 

dou W 3 ok. So, W 3 is actually matrix right this is that matrix that I wrote down  which 



was a 2 cross 3 matrix right and therefore, J is a scalar by the way right L right we  are 

using L right. So, L is a scalar therefore, right this will be this will be a matrix again  right 

what will what will that how will you express it in terms of delta and a J? . Outer product 

very good right. 

 

 So, outer  product. So, this will be delta L plus 1 into a L transpose ok this is just just when 

you  see outer product right. So, you have something like this right. So, you have this vector  

and you know column vector and then another row vector right. So, and in general right  

this you can write down in general as dou J no no ok this is for L in fact, that is  for L. If it 

was 3 it would have been delta 4 whatever right I mean a 3 transpose that  is what it have 

been, but in general right you can write it down and these are all vectors  by the way a L 

on top L is always coming on top right. 

 

 So, a L transpose. So, this is  an outer product ok. So, so what is right what this kind of 

essentially  means is that all these updates can be done ok you can have you can have as 

many layers  as you want and you can always back propagate and and you know and then 

sense what is the  error right that you are making right now and therefore, how should the 

how should the  weights be updated. So, that the new weights are such that the overall error 

if you think  of that cost or landscape right that we had for the cost function right you are 

trying  to traverse on that and you are trying to traverse in a sort of a direction that will  that 

will reduce the error and which way to go is coming out of the out of these equations  right 

and therefore, and you can imagine right people are doing it over you see millions  of 

millions of weights and biases. So, so that way it is very powerful for us right  we just took 

a small example just to just to have some insights into how this works  works, but think 

about the way it is all this is been implemented right people have like  a million parameters 

60 million, 70 million parameters out there and the whole thing works.  So, very smoothly 

right and there is a lot of work that is gone into actually building  those packages and all 

ok. 

 

 So, so that you know you can do this quickly and you know  make make use of you know 

all kinds of you know matrix properties and all in order to  be able to you know do this in 

a fast manner ok.  Now, yeah so is there anything else that I wanted to say in this ok and 

then by the way  right. So, what I will do is when we come to convolutional networks 

which we will come  very shortly right we would not we would not again solve all of this 

right this back prop  and I will just leave it to you ok because once you do it for MLP I 

mean you know that  becomes in fact a simpler case of this right because I mean you know 

you have convolution  and all going on. Therefore, it we do not want to sort of spend  too 

much time right do I just thought we will do this once. So, that right for those of  you right 

who have not seen back prop right I mean you will at least have seen it once  right in your 

life ok. So, I think we will stop here. 


