
  Then right going forward, we just look at yeah let us just kind of look at the activation  

function. So, now that we have a condition that now that we know that right gradient  

descent is a way out for us to be able to right minimize. And we still have not talked  about 

you know just looks like we can compute dou L by say dou theta irrespective of how  many 

layers you have and so on. There is an elegant way to do that which is what actually  

propped up you know all this activity in the say deep network what is called back 

propagation  algorithm which I think we will at least be able to give the schematic today and 

then  next class I think we should be able to you know we should be able to show how it 

works.  But the activation functions are now right are now sort of you know important 

because  these are the ones you know through which you are going to introduce a non-

linearity  right. So, until now we saw a step kind of thing  right what is called actually a heat 

side heat side signal right. 

 

 So, where you had  some like 0 and then and then it jumps up to 1. So, you have x and then 

you write f  of x and for x let us say less than 0 it is 0 and f and f of x and when x is greater 

than  0 it is equal to 1 and that x equal to 0 you can say it is undefined some people might  

say if it is a Fourier series what would that be if you approximated this by a Fourier you  

know transform not Fourier series Fourier transform what would you get at x equal to  0 

half right. But here right people do not do not worry so much and all right about that  some 

people will say that will say that right at f of you know at x equal to 0 I will take  it to be 0 or 

somebody will take it to be 1 ok.  Now, this is this is actually heat side, but then, but then the 

thing is right because  of the fact that you need to be able to take dou f by dou x right along 

the way and and  right and because at this point right at this point it is not differentiable. 

 

 What will  it be I mean if you if you actually went ahead and can you do f dash of x at 0 if 

you kind  of did that at what would you get delta right, but, but then right delta and all is not 

something  that you can implement in an architecture right and impulse is to just 

understand mathematically  right, but, but not, but not here ok. Now, so which is why this 

this heat side and  all is not used right that we used in the right in the beginning just to make 

the argument  for some simplicity right, but really this is not the one that is used then there 

is  something called sigmoid right which has been around for a long time, but again it is not  

the one that is most commonly used ok. Initially I think another lot of hype around it, but,  

but then at all that kind of settled down ok.  Now this guy is like f of x is equal to 1 by 1 plus 

e raise to minus x. So, this is  1 plus 1 by 1 plus e minus x right and what do you have. 

 

 So, so then right I mean if you  if you plot this guy right. So, at x equal to 0 it is half right this 

is x versus f of  x. So, at x equal to 0 it is 1 by 2 1 by 2 right. So, it is half and then at x as x 

tends  to right negative you know a large value then this will go down and then as you as 

you then  go up right x becomes a positive quantity you are hitting 1 right ok. This is actually  

a this is called a sigmoid and then it is nice because you know it gives you all values  

between right 0 and 1 therefore, it looks like a probability kind of thing right this  looks like 

a nice thing to use because takes values between 0 and 1 and f dash of x right  what will that 

be. 



 

 So, f dash of x right what is it. So, minus e power x right you know  my no e power x e power 

x by 1 plus e raise e power x by 1 plus e raise to minus x the  whole square right. And then 

so we can write this as 1 plus e  power no minus x right minus x. So, 1 plus e raise to minus 

x. So, let me just add and  add and subtract and then you have 1 plus e raise to minus x the 

whole square. 

 

 So, you  get 1 minus no no yeah. So, you have 1 plus e raise to minus x right. So, you have 1 

by  1 plus e raise to minus x for this and then minus 1 by 1 plus e raise to minus x the whole  

square right. So, 1 by 1 plus e raise to minus x is actually f of x right itself that is  this guy 

what happened did I make a make a mistake it is ok no. So, then f of x minus  this is what 1 

by 1 plus e even. 

 

 So, this is f square of x right. So, this is like f  of x into 1 minus f of x. So, f dash of x why we 

are why we are talking  about it is because that is what which use gradient descent and 

derivative and all right  we will actually enter enter the picture therefore, we should know 

what it is. So, if you try  to if you try to intuitively see right it looks like a derivative is 

initially increasing  right and then and then after you you hit x equal to 0 it starts to fall off 

right eventually  goes to 0 and on the left again it goes all the way to 0. So, what do you what 

do you  expect I mean it will look like I mean. 

 

 So, f dash of x and if you try to see how it will  look like and so on that is going to. So, at 0 at 

0 what is it 1 minus 0.5 0.5 into  0.5 that is like 2. 

 

25 right. So, at 0 it is 0.25 and then and then it is got to be like  that on either side it will go 

down go down to 0 and then right when the why this matters  is because you know when 

you when you take this when you take this gradient right which  is what is involved in the 

step when you move forward or whatever right during your gradient  descent you know 

this one right iterations. Then if the slope really falls off right then  it means that for large 

values of x right you would not even move much right that is  what it is showing you know 

the gradient is very low.  So, if you take if you take an x which is which is which is which is 

very low which  means on the on the other side right negative side it is very low or on the 

positive side  if it is very high it looks like the gradient right for those points are going to be 

very  low. Therefore, it then means that you could you could get stuck somewhere right you 

would  not be able to you would not be able to move forward much because the gradient 

value itself  is very low. 

 

 That is also the reason why sigmoid and all  right is not really a prominent I mean if you 

look at look at these look at these hidden  layers right you would not find sigmoid and all 

right in the first initial layers and  all if at all probably right they come much later because if 

you throw them right at the  beginning then you will encounter issues of this kind where if 

your x is very large either  way right if the let us say magnitude of x is large you are you are 

in trouble because  the gradient then is small for you know large magnitudes of x.  But there 



was a time right when let us say right people thought sigmoid was right it  was it was 

everything of course, then right that does not mean that people do not use  it in the initial I 

am saying generally not yeah you may find some network where they  have done it and then 

you should not tell me that hey look you said that, but then they  are not. Then the next one 

is what is called tan hyperbolic  ok, when tan hyperbolic is what sin h x by cos h x right. So, it 

is some e power x minus  e power minus x by e power x by e power x plus e power minus x 

ok. This is another sort  of an activation ok. 

 

 Let me just ask you a question right can you have can you have any  I mean right I do not 

expect a straight forward answer because you know this kind of say tricky  tricky question 

can you have any kind of any kind of non-linear function as an activation.  I mean that I am 

showing a few know I am going to show you sigmoid heapsite we saw right  and then maybe 

tan hyperbolic it will be like minus 1 to 1, but right in general of course,  one thing is that I 

think you know maybe we will again ask this question right after we  do this ok. We will just 

finish this then we will come  back then what happens is so as x goes negative all right. So, 

as x goes negative so you have  like minus 1 right. So, as x goes negative that terms are wise 

whereas, the first first  two terms will drop off a numerator and denominator and that x 

equal to 0 it is 0 by 2 right. 

 

  So, it goes like that right. So, it goes like 1 to minus 1 f of x and it goes via 0. So,  this is f of x 

versus x right and that x equal to 0 it is 0 it is 0 and I will just leave  it to you as actually and 

as a exercise that derivative of this I mean. So, if you call  this as f of x then f dash of x is 1 

minus f of x whole square these are all simple things  right you guys know how to do this 

and again if you try to plot this right f dash then  at x equal to 0 it is 1 right and yeah and you 

know whether you go this way or that way  because you are squaring it right. So, it will 

again go down on either side and  you get this. 

 

 So, this is your f dash of x again it is also has a problem that is somewhat  similar to sigmoid 

right that means, for large magnitudes of x yeah right. So, slope will  be will be small that 

means, you have a gradient of course, I am not drawing it correctly it  is all symmetric right. 

So, this is right a gradient will then be small therefore, not  really a great thing to use. Then 

the then the third one which is the most commonly used  is ReLU this is called rectified 

linear unit rectified linear unit ReLU I mean R e taken  from here L and U taken from there 

rectified linear unit and this looks like this.  So, you have x you have f of x and f of x is 

actually max of x comma 0. 

 

 So, which means  that on the positive side you have a slope 1. So, whatever is x right that is 

that is  also the value of say f of x negative side it is simply 0. So, it means. So, it means  that 

right. So, it means it would not even allow a negative values to kind of go forward  right 

because it is simply clamped them to 0. 

 

  But in the nice thing about this is that for let us say positive x right it will I mean  you do 

not have a gradient. So, if you try to plot f dash of x what will that look like  will be a step 



right. So, it will be like this and then has a value 1. So, it is f dash  of x versus x so on. 

 

 So, at. So, at. So, at strictly speaking at x equal to 0 f dash is  kind of undefined, but then 

people just you know take it to be 0 right. So, f dash of  x is 1 for x greater than 0 and 0 for x 

less than or equal to 0 or some people may say  the other way again right that is simply 

because you want to be able to go forward and kind  of use it right otherwise I mean you 

would be stuck.  Now, there is also something called leaky ReLU right which means that 

which means the  rate I mean if you do not like the fact that you are you are completely 

clamping all the  values to the positive side. So, what you can do is you can have what is 

called a leaky  ReLU that means that means you let you let something leak through and that 

will look  like this. So, you have a small slope right on this side and then of course, then you  

have the slope of 1 let us say this is x and then this is f of x right. 

 

 So, you. So, if  you allow for you know this a positive slope right, but then a small value. So, 

that. So,  that you if x takes some negative values you still allow them to survive right you do 

not  just knock them off and this will be like suppose let us say suppose I take this to  be 

some beta then f of x is max of what is that beta x comma x  and of course, if you try to take 

the gradient. So, this will be like what beta constant here  and then jumps up to 1 and this is 

f dash that is what it will be. So, this leaky ReLU  is used quite often. 

 

 Now, suppose I suppose I did come back to  that sort of a question and then and then you 

know and then there are some there are  some other variations also no problem right we do 

not have to do right I mean every one  of them, but let me ask you this question. So, now, 

there is see some of them have you  know have what are called you know some of these are 

called squashing functions in the  sense that they do not allow for example, if you look at 

sigmoid and then tan hyperbolic  they are called squashing because they do not let the 

output go beyond let us say minus  1 1 and so on and so that is called squashing. ReLU is not 

like that right on the positive  side you can go as much as you want with the slope 1. The 

slope is equal to 1 right not  x I do not know how I wrote slope to x the slope is 1.  Yeah I 

mean if I write something I mean sometimes I have something in my mind and then I may  

not write the same thing you know writing there. 

 

 So, if I make a mistake let me know  now. So, what was I saying. So, now, can we use any 

kind of a non-linear function as an  activation function. Suppose that is a sin can I use cos sin 

why do not you use that  again I mean see the again that is not going to theoretical in the 

right answer and all  right which I have and I have not seen one, but there is there is there is 

some reason  right which seems to be a reasonable reason what do you think what what is 

the I mean  now. So, the idea is that right I mean there is  there is there is something about 

these functions right which is common. 

 

 I mean. So, the answer  is this right. So, the activation function should be a monotonic 

function otherwise I  mean right you can ask I mean can you not use a sin or cos, but then 

the problem is  the output will start fluctuating right which you do not want again right I am 



saying right  theoretically it is not like somebody has proven that because I in fact, I read 

somewhere  that somebody has shown that sin can all still be used get it I mean right 

empirical evidence  is you cannot somebody say that look I have used it and then I still get 

something, but  normally you do not see it you do not see in sin you do not see sin or you 

know or you  know cosine or something you do not see any of that the right reason being 

that you you  kind of you would write the activation function to be to be a monotonic 

function.  In fact, in fact, in fact, right that is why I wanted to wait for this right before I again  

went back to the right universal approximation theorem actually the the the original form  

was was such that right you should have should be a squashing function the original UAT 

right  no though the activation function that you used had to be squashing functions, but 

then  but then it is only a sufficient condition that is why you have relu right it is not  a 

squashing function right relu. Boundary.  Yeah, yeah I mean the squashing means you have 

to kind of bound the boundary value somewhere  they cannot just just go on that is relu will 

allow it to go to go to go to any value right,  but then, but I think as recent as I think 2, 3 

years ago somebody then they came up  with actually a proof for proof for relu that the 

universal approximation holds, but then  before that right if you read the actual theorem it 

would say that it should be a squashing  function right and and then the and the other thing 

is that regarding the value itself that  you wanted the output I think you know yesterday 

yesterday I was trying to point out that at  the output layer whether you should have an 

activation. 

 

  So for example, this is f of x what should it be. So for example, if it is a classification  

problem very likely that you will have a sigmoid sitting there at the output layer. So, so  like 

I said you have sort of know in between you could have many layers where probably  you 

have relu and all that, but then towards the end if you have a classification problem  

typically expect a sigmoid to be sitting there. If it is a if it is a regression problem typically  

expect a expect a relu to be sitting there or it could be a simply a simply a simple  linear unit 

it does not have any other activation it can also happen at the output right again  as I said 

universal approximation theorem says nothing about what should be in the output  layer. 

The activation and all is for the is for this  for that single single layer right which is a this one 

hidden layer it is all about that,  but in our examples we took of course, you know activation 

to be in the output neuron  also right we took all that, but, but that is why the output neuron 

right whether it  will be simply linear it can also be totally linear it does not have to have an 

activation  at all. 

 

 It can have activation of the type sigmoid, it can have activation of the type  relu it does not 

have to have activations at all also right. So, you can have you can  have networks of all all 

types.  So, now, so now, the now the point is right now to sort of go back and say that now I  

have I have some input right X 1 to X n and then and then I have let us say right hidden  

layer 1, hidden layer 2, hidden layer 3 whatever I got let us say right 50 layers and then  and 

then out comes my output layer. So, this is my input layer then this is a bunch of  hidden 

layers and I have output layer right. Now, what do I want I want to be able to solve  for my 

weights and and the biases which are all sitting here right. 



 

 So, weights and biases  are here. So, the biases are sitting in the neurons and the weights 

are all those interconnections  that are going from the output of the previous layer to the 

input of the right next layer.  So, you want to find all of that and you want to be able to able 

to solve. So, at the output  right you have a cost function L theta L of theta where theta is the 

weight and the biases  that is like the whole network weights and biases right.  So, so the 

idea was that how does one solve it then right I mean you know you may you  may you may 

love to have a deep network, but then you should have a way to train it right. 

 

  So, so this. So, this back propagation which is basically you know basically a derivative  

chain rule that is what it is back back propagation algorithm is the one that. So, back 

propagation  right. So, this is 1986. So, so this back prop is actually a systematic way to and 

you  know see these is nobody even even writes down these equations right because if you  

see the way these things are structured these packages that you just define the cost function  

it does everything else for you. If you use pi torch or use tensor floor I  think, but I think we 

should at least in our life we do it at least once. 

 

 So, that we know  right how it works right and. So, the back propagation is what I want to 

do next. So,  so it kind of looks like this. So, as an example I am going to take a simple 

example, but this  example will help right illustrate how those whole back prop works. So, I 

am just going  to take you know a 2 input case and you know the first this one hidden layer 

and I am trying  to take a fairly general case. 

 

 So, that we understand I am going to take  4 neurons I think let me make them a little 

bigger just I am just blowing it up. Then  I have a second hidden layer where I have got 3 

neurons then I have an output layer  where I have got 2 neurons right which is which is. So, 

that means, right we are not  we are not taking a very simple case for something that you 

can explain in class right this is  enough. So, x 1 x 2 and I am going to write down a few 

things here now.  Now, I am not going to show all the all the you know weight connection, 

but let me say  that right this will get kind of say connected to this. 

 

 So, this goes there this goes there  this goes there and these weights right I mean I will just 

show for now let me also  put something here I will tell you right what these things mean.  

And then so, this is input layer I am going to call this as l equal to 1 and all these  things will 

matter and this will be l equal to 2 this will be l equal to 3 will be l equal  to 4 and I am going 

to write this thing as Z 1. So, the first neuron I will write it  as Z 1 2 because this l is 2. So, 

each is like this is like Z i l and B i l if you are  kind of right think about it like that I am sorry 

A i l not B i this is A i.  So, what this means is this is like A 1 2 and then this will be like Z 2 2 

it is not  square just Z 2 2 then A 2 2 Z 2 2 A 2 2 then Z 3 2 because this neuron is a third 

neuron  this will be A 3 2 Z 4 2 A 4 2. 

 

 Then similarly here this will become Z 1 3. So, this will  be like Z 1 3 because l is 3 Z 1 3 first 

neuron therefore, it will be A 1 3 then second neuron  therefore, Z 2 then the superscript is 



for l Z 2 3 A 2 3 then Z 3 3 A 3 3 what will be  the fourth one then. So, we should write it as Z 

1 4 A 1 4 Z 2 4 A 2 4 as long as you  can understand this sort of a notation we are fine.  And 

then let us call this as output let us call this as Y 1 hat let us call this as Y  2 hat and then let 

this wait. So, this is the first neuron. So, let us call this as  W now each of these branches 

weights will be like W i j l and B the bias we will indicate  it as B what is the B j l no B i l B i l i 

because i is i is the first neuron second  neuron and so on. 

 

 And you know what is then what will typically  read people write is a plus 1 here there will 

be a plus 1 here plus 1 here why do you think  you need that plus 1 because there is a bias 

term no. So, these weights will get weighted  you have W 1 X 1 plus W 2 X 2 plus W 3 plus 

theta 1 and that is the theta 1 is this is  plus 1 that means there is actually an arm going from 

what to say I mean you I mean see  there is a there is a let me show it by a by different color. 

So, I mean you have like  a one arm going like this plus. So, which means that you have B 1 

say for example, it  is l equal to 2. So, this bias will be B 1 2 this bias will  be B 2 2 the bias 

here for this is a neuron will be will be will be B 3 B 3 2 and then  B 4 2. 

 

 So, the Z is actually the Z is actually that that linear weighted combination plus  the bias 

means Z is like you know summation W i j X j plus theta plus B B j anyway I mean  we will 

revisit you do not have to worry too much, but I hope you understand this plus  1 is to just 

indicate the bias, but we would not show these arms going because you know  then it will 

make it very complicated. So, I am just going to remove, but just believe  remember that 

everywhere this plus 1. So, the plus 1 will mean that the bias for the  for the for the neuron 

right going ahead and then.  So, in that sense right this will be like you know W 1 W 1 1 1 

this will be this is  a second neuron first right input from the input from the first input. So, 

write W 2  1 this will be like W 3 1 1 this will be like W 4 1 1. 

 

 So, I am just following the same  this one notation that we used earlier we are not changing 

that then what will be what  will be the weight here then how will you how will you how 

will you how will you write  this. So, this should be like W i j l. So, what will be the first 

weight W now W 1 1  2 right and this will be like this will be like W 2 2 2 and so on.  So, you 

should understand now I mean if I had if I had given the other weight then it  will have been 

W 2 1 2. So, I mean something from here to there it would have been W 2  1 2 right. 

 

 So, as long as you understand the notation right it is fine then finally, right  I am just going 

to write something as delta delta 1 2 that is right. So, delta 2 2. So,  all this like you know 

delta i l. So, this is like delta i l. So, I will stop here and  then this would be like delta 3 2 will 

be like delta 4 2 and similarly this would be  like delta 1 3 delta 2 3 delta 3 3 and then this 

would be like delta 1 4 and then this  would be like delta 2 4 and all these things are still 

there. 

 

  So, this weight connection and all is there. So, this will be like W W 1 1 1 and then you  will 

have three right W 1 1 3 and then W 1 2 3 what all that is still there and then  the bias will 

be BIL. 


