Analog Electronic Circuits
Prof. Shanthi Pavan
Department of Electrical Engineering
Indian Institute of Technology, Madras

Lecture - 70
Dominant-Pole Compensation part 2
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So, now I mean staring at this particular example right. So, because we have introduced this
dominant pole ®wy; which is much much smaller than ®, right ok. The loop gain function
approximates that of the response of the loop gain basically approximates that of a first order
system and therefore, the closed and so, you basically get now the stability of a first order
system right. Truly it's actually a fourth order system right, but what this is telling us is that
since the higher the poles w, are so, far away right for all practical purposes this is looking

like a first order system right and why do I say for all practical purposes.

So, basically you can see that when these higher poles kick in which add extra phase which
can potentially make the angle of the loop gain equal to 180° right the magnitude has become
so, small that 1 + loop gain function whatever you add right if the phase is 180° but the

magnitude is so, small that denominator can never become 0 does it make sense right.

So, for all practical purposes this looks like a first order loop gain function right which then,

therefore, means that the 3 dB bandwidth of the closed loop system will be A,* f what do you



call the 3 dB bandwidth will be A’ f w,. So, here we have a situation which we wanted,
namely that we have the high DC loop gain corresponding to a third order system and the
stability properties corresponding to a first order system. Now, the question is what have we
lost in the bargain? I mean you know that there is no free lunch right. So, what have we lost?
See in the original system remember that the loop gain function was high up to a frequency of
almost ®,. But now what is happening? You know at frequencies way below ®,. We basically

see that the loop gain has already fallen off to 1.

So, you know one could of course, complain that well in this whole process you know earlier
we had this this loop gain magnitude which is very large for up to very high frequencies and
now you know we end up in a situation where the magnitude response of the magnitude of
the loop gain has fallen off to 1 right at frequencies way below ®,. Remember that if you
want this ®, not to bother you at all right these poles at @, not to bother you the unity gain
what comment can we make about the unity gain frequency versus the location of all these

extra these poles at ®,

Let me repeat the question. If we did not want these extra poles, I mean these poles at o, to
bother us in any way as far as stability is concerned, what comment can we make about the
relative position of the unity gain frequency which is A,’ f ®4 versus these poles at ®,? So,
basically you know to make this look like a very good first order system you must choose the

unity gain frequency to be way smaller than the .

The location of the higher poles does it make sense ok? So, therefore, you know what we
have paid in order to achieve this stability is that what you have paid in order to achieve
stability is that well bandwidth has gone down right. Well, but this seems like a reasonable
trade off because I mean you know you earlier had a system which was unusable because it
was unstable right. Now, well you have a system which is usable and you know and you have

the high DC loop gain that you want right.

So, this is the basic idea behind dominant pole compensation right. So, now the question is
ok, well now what if for instance you know I chose this, let us say I chose this dominant pole
frequency to be wy. What if I had made another choice my, like this ok. So, this is another
choice of dominant pole frequency, this is another choice of dominant pole frequency right.
Here also this is A,* what is that? A’ f ©g,. Here also at the frequency that the higher order

poles kick in alright. The magnitude of what comment we can make about the magnitude of



the loop gain function is less than 1 right. So, you know for all practical purposes this also
looks like a first order system. So, now the question and, but what is the advantage of

choosing 4, over ®g,?
Student: The unity gains bandwidth.

Well, the unity gain bandwidth is evidently increased by some factor. So, there must be a way
of quantifying I mean which of these systems I mean which of these systems w4 which of
these two choices of dominant pole frequency ®,, ®4, which of them you know make the loop
gain a better approximation to a first order system w,, because you know it is the frequency at
which you know the higher order poles kick in at that frequency the magnitude is much

smaller. So, there must be some number or some metric to be able to qualify.

You know how close to the true first order system the dominant pole is making the system
look like. Is that clear right? I mean you know as you can see in this example both ®y; and wg,
seem to be doing a reasonable job of making the system stable. But clearly, we see that oy, is;
obviously, a much better I mean is doing a better job of making it look like a first order
system when compared to ®g4,. So, now the question is how do you quantify it? How can we I
mean yeah can we think of ways in which we can say visually it's apparent ok. The question
is you know we are an engineering right we would like to attach a number to everything. So,

what can we do?

The third order system, you compare it and then what? So, what will you do again? So, you
will take a third order system. You will take this compensated system then you will draw the
Bode plot of a true first order system with this with the same pole frequency. The true first

order system will basically be something like that and then what will you do?

I mean you basically you will what you are saying is you will measure the magnitude of the
loop gain function at which the Bode plot of the high order system deviates from the actual
true first order system correct and if the magnitude is smaller. It is a better approximation to a
true first order system. Does it make sense ok? Is that clear or not alright? So, unfortunately it
turns out I mean if you have to do this in practice what practical difficulties do you think this

will lead to?

I mean let us say you somehow make a first order system with you know with ®,; ok. The

problem with magnitude measurement is that you know at the frequency where the response



of the first order system deviates from the higher order system the magnitude is very small

and therefore, making any sort of measurement on this becomes fundamentally difficult.
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So, but fortunately it turns out and you should have seen this in your classes before, but let
me pay attention to the following. So, let us say you have a; you have a single pole system
right 1/(1 + s/®,) and you would like to measure that you do not know what o, is; you only

have a low frequency sinusoidal generator with a frequency ,.

When you are in a lab you are told that inside the box is basically a system with a DC gain of
1 and a pole frequency o, right 3 dB bandwidth ®,. I have a low frequency sine wave ®, right
where [ know that @, is much smaller than o,. How will we find ®,? The many ways of doing

this how will we find ®,?

So, basically one way is to say well I will know plop in the sin wave look at the output what

is the magnitude of the output?
Student: 1/N(1+Ho,%®,2)).

That is the magnitude I will measure and from this I will be able to calculate ®,/®, ok. So,
now. So, this ®,/®, is a small number right, which basically means that basically the

magnitude response is looking like this at DC. What is the slope of that magnitude response?

Student: 0.



It is actually O right. So, if you measure the magnitude response at ®,. The slope is very
small. So, if you make a small error in measuring the amplitude what comment can you make

about the error in measuring .

It will be very high. Does it make sense to people? On the other hand, what is the angle of the
phase shift between the input and the output? -tan™'(w,/,). For small /0, what do you
know the tan inverse approximately? This is approximately - o, m,. So, this is more sensitive
to ®,, the magnitude falls off like this. What comment can you make about the phase lag? It is
linearly correct. So, which would be which makes more sense to use to make a lot more sense
to use phase rather than magnitude right. Because the effect of a pole therefore, is visible way

earlier in the phase plot rather than in the magnitude plot ok alright.

I do not know how many of you have done this undergrad experiment where you build a
filter. Let us say you build a band pass filter and you have to measure it center frequency
right. What is the dumb way of doing it? If you go on changing frequency look where the
magnitude peaks and then right? But the problem with that is that whenever the magnitude
peaks its derivative is 0. So, you change the frequency it looks like all you know the
magnitude looks largely flat correct. So, you are not able to make a good judgment. However,
if you look at the phase it turns out that the phase will be very rapidly at the center frequency.
So, if you just look at the phase shift between the input and output you will find it is

extremely sensitive to center frequency which is basically what you want.

So, you will be able to accurately measure the center frequency right. So, the moral of both
these stories is that the phase is a much more sensitive function of you know frequency than
the magnitude is. So, the effect of these higher poles on the magnitude occurs only you know
at o, right. But the phase basically occurs when the effect on the phase occurs at a much
carlier frequency. So, for example, you know, a convenient way of measuring the phase I
mean we want to. | mean basically we want these higher order poles to be far away from the
unity gain frequency correctly. They you want them to occur way after this has become the
magnitude of the loop gain function has become 1 right. So, a way of measuring how far
these extra poles are from the unity gain frequency is to simply measure the phase shift

caused by these higher order poles at the unity gain frequency not at ®,.

I mean you know at o, they cause 45° each that does not make any sense. So, basically, we

want to look at to figure out how far these extra poles are from the unity gain frequency. We



need to measure the phase of the loop gain function at the unity gain frequency. The phase
will consist of two parts one is that due to ®, itself. That dominant pole frequency will add
some phase shift. How much phase shift does it add at unity gain? It basically adds -90°. If

there were no higher order poles at all.

Then this would be a true first order system and the angle of the loop gain at the unity gain
frequency would be exactly -90° assuming that 1/A.* fis very large. Now, if there were these
extra guys at ®,, what would be the phase shift at the unity gain frequency? So, basically the
phase lag would be more than 90°. So, if the loop gain function is A’ f/( 1 + s/oy) say (1 +
s/®,) ?, then at the unity gain frequency which is I am going to call that A f o, the angle of

the loop gain what is the magnitude of the loop gain function at the unity gain frequency?
Student: 1.

By definition unity gain frequency means the frequency at which the loop gain has a
magnitude 2. So, the magnitude of the loop gain is 1 by definition the angle of the loop gain

function is what?
Student: Less.

Yeah, you know everything, just plug it in and tell me what it is man — /2 -3 tan™(0/®,).
And so, clearly as you see a sanity check as ®, tends to infinity, what will you get for the loop
gain I mean for the angle of the loop gain at the unity gain frequency — /2. The higher and
higher the unity gain frequency becomes in relation to ®,. You see that this phase lag
becomes more and more negative. And you know at what point do we start becoming very

worried?

We know that when the angle of the loop gain becomes -1 at the unity gain frequency the
loop gain then becomes -1 and the closed loop gain becomes infinite which means that the
system is unstable. Does it make sense? Is this clear? So, this basic summary is that the angle
of the loop gains at the unity gain frequency. You know basically quantifies the separation

between UGB and let me call this between o, and the higher order poles ok.

And we know that the danger mark is basically 180° ok and so, you know the closer the loop
gain angle of the loop gain at the unity gain frequency becomes to 180° the more we need to

be worried about instability right. So, you know a way to quantify that is to actually look at



the difference between 180-degree phase lag and the actual phase. So, if it is a true first order

system that difference would be how much?
Student: 90°.

90° because 180° is the phase lag is the danger mark the first order system will give you a
phase lag of 90°. So, the difference is 90°. Now, if you have extra higher order poles what

comment can we make about that difference?
Student: Less than 90°.

It will be less than 90°. So, that is what is called the phase margin ok. So, we will continue in

the next class.



