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Lecture - 69
Dominant - Pole Compensation part 1
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In the last class, we were basically looking at the stability of negative feedback systems and
you know over the last couple of classes, we looked at we started off with a first order
forward amplifier and we found that it is unconditionally stable. Unfortunately, the practical
reality happens to be that the DC gain that you can get is very modest and consequently you

will basically have you know that while it is great, it is not realizable in practice, right.

The high gain that we want is not realizable in practice with one stage. And, then what did we
do? We said ok, well the easiest way of increasing gain seems to be to simply cascade stages.
So, we cascade at two stages and we found that the cache of the closed loop system is

technically stable.

But for all practical purposes, the transient response is got, I mean if we want to realize the
ideal of having a large loop gain at DC, then the quality factor of the closed loop poles is
going to be you know so high that the transient response you know when you know excited
with the with the step for instance is going to ring for a very, very long time and in an

amplifier that is actually quite undesirable, right.



Then we thought ok maybe you know it just so happens that the second order case we got
unlucky and we said let us try and look at the, there we will put three stages in cascade and
now you know all hell breaks loose. The poles are now you know if , A f that is the DC loop

gain is greater than even 8, right. We basically find that the closed loop system is unstable,

ok.

Now, yesterday we actually solved the equations, right and we found the roots of the
characteristic equation and you know plotted the locus of the poles as a function of the DC
loop gain and you know we found when the system becomes unstable, right. As another way

of doing it I just want to cover this briefly, right.

So, remember that the closed loop gain is 1/f (loop gain(s)/(1 + loop gain (s))) and if the poles
are on the jo axis. So, I mean the aim therefore, is to find and in our case loop gain of s

happens to be A,’ /(1 + s/®,)’, ok.

And, yesterday we used root locus to find for what A_* f the poles will just be on the jo axis.
So, you know this is an alternate way of finding the same answer and the approach is the
following. If the poles are on the jo axis, anyway we know that they must be complex

conjugate, right. There must be at +jw,, correct.

Now, what is the meaning of you know if you have a pole at a certain complex frequency for
a transfer function? What will you get when you evaluate the transfer function at that pole

frequency? So, basically the transfer function when evaluated at pole frequency goes to?
Student: Infinity.

So, now there are poles at +jo , right. So, therefore, therefore, loop gain of jow/(1 + loop gain
of jo )must go to infinity at jo,, right? [ mean so, basically must go to infinity, correct. So, if

this must go to infinity what comment can you make about loop gain evaluated at jo,?
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So, which basically means that loop gain of jo = - 1, ok, alright. So, if so, now, if you look at
the loop gain function it is A’ f, it is a complex function, it is (1 + jo/w,)’ and this must be
equal to - 1, correct. So, it is a complex number on the left hand side. So, yeah, how many
equations do we get? Either real part, imaginary part or magnitude and phase. So, this

basically leads to A, /(1 + o,%/®,? )* halves must be equal to 1 and what about the angle? So,
tan™'(w,/®,) must be equal to n/3, alright. So, which basically means what o, is 3(00 which

basically what are the unknowns that we are trying to find?

Student: A} f.

A f and o,, right. o, is 30 . So, what is A} 7 So, which basically means that A* fis, 8,

because o, /w,” is now 3, 3 + 1 = 4, 4% is 8 and therefore, A,* fis 8, which is you know not
surprising because this is exactly, this is what we expected anyway which we got from root

locus analysis, right.

So, you know, so, you know one way of basically checking, you know if a system is close to
becoming unstable, right. So, if a system is close to becoming unstable what does it actually
mean? I mean so, in other words, if the closed loop system has got poles on the jo axis, or
close to the jo axis, what comment can you make about the closed loop transfer function? It

will become very, very large at a certain frequency, right? And, if that happens, I mean



looking at this expression, when do you think the gain can become very large at a certain

frequency?
So, when the denominator is going close to?
Student: 0.

0 and that happens when the loop gain evaluated at some complex frequency basically at
some jo, if that loop gain function is coming close to - 1, which mind you is basically
magnitude is 1, the angle of the loop gain is, if loop gain of some jo is - 1, the magnitude of

the loop gain is?
Student: 1.

What is the angle of the loop gain? The phase lag is basically 180 degrees, ok. If that happens
then you know that 1 + loop gain basically goes to 0 and then therefore, the closed loop gain
goes to infinity, which is telling you that there is a, there is a, there is a pole for the closed

loop system at that frequency jo, alright. Does it make sense folks? Alright.

So, so, anyway so, the question is, you know, ok well all this analysis is fine, but the real
question is, you know what we do to fix this problem, right. So, as we discussed yesterday,
we want to have the height DC loop gain as well as you know stability, right, because this A?

fbeing 8 is simply a non-starter, correct, ok.
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So, the basic idea is the following and you know again we take inspiration from the fact that a
first order system has got none of these stability problems. So, the idea is well, you know if I
have a third order loop gain function, the loop gain function, the magnitude of the loop gain

function basically if I all plot this on a log plot, right.

So, you know when I mark this as A,’ f, what actually it means is that what I am plotting is
20 log(A,’ 1), I do not want to keep writing this 20 log all the time and then make the whole
plot very messy, ok. So, now if you plot the Bode plot of this, this guy, what does this look
like? So, let us say this is ®,, how will the Bode plot of this loop gain function Aj*f/( 1 +

s/®,)’, what does it look like?

Well, the bode plot is an asymptotic plot. So, it looks like you know and mind you this is
log(w), and after that how will it roll off? -60 dB/decade. So, this basically does something
like this, ok. So, this is - 60 dB/decade. So, you want to make this third order system look
like a first order system. So, any suggestions on what we can do? Ok, let us say, ok let me
give an analogy, right, here is a stick, ok, alright. How do you make this stick smaller without

touching it?

If you want to make this stick smaller without touching it, well you draw a longer line next to
it, right, which basically is equivalent to saying that the small, large etcetera are all relative
terms, right. And if you want to make the stick longer without having to touch it, what do you

do?

You put a stick smaller next to it and then finally, this becomes long, right, ok. So, now, you
know using this as inspiration, you know what do you think we can do to make this look like

a first order system, ok?
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So, let us take a look at what all things are possible and then you know rule out some
possibilities. So, this is the loop gain. So, what our Abhishek is saying here is hey, you know
why do not I, this is easy. Why do not I just multiply this Af (1 + s/®,?)/( 1 + s/w,)*? I will
cancel off, right, on paper it looks perfect, right, and I get a first order system, you know

move on, ok.

What is the problem with this with this approach? I mean so, you cascading this R forward
amplifier with another block with this transfer function, correct. So, what is the gain of this
transfer for this extra transfer function that you are introducing? What is the gain of that at

infinity?

It is infinite, right. So, it is impossible to get a gain of infinity at infinite frequency, correct.
So, this is and remember that you can never realize a transfer function 0 without adding an
extra pole. How do you realize a 0? There must be some memory element. That memory
element i1s going to add some poles, right and presumably it is, you know, physically
impossible to get those poles to be at a higher frequency than ®, because if I was able to
make such high frequency poles, I may put them in my amplifier in the first place. You
understand? Ok. So, mathematically though this seems, you know, the easiest thing to do, you
just multiply by, you know, (1 + s/®,)* and then we are done, right. So, that is not practical,

ok, alright. So, what else can we do?
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So, basically the idea is, well, you know, what if I deliberately multiply this over a function
1/(1 + s/ow,), where w, is much, much smaller than w,, right. First of all, is this practical? Can
we do this? Well, you know, it is always difficult to make a slow person fast, but making a
fast person slow is very easy, right ok. So, you can always pull people down, right? So, to
slow a fast system which is very fast, you know, we are very good at doing it. So, it is very

straightforward.

All that you take is, you know, find some node in the circuit, take a huge capacitor and put it
on that node, the whole circuit will slow down, right, ok. So, what do you call, and if we
choose wy to be very, very small compared to ®,, how will the Bode plot of this resulting

animal look like?
Student: Up to w, it is constant.

Up to o, it will basically be constant. After that what will happen? It will fall down at - 20
dB/decade, which is what it looks like for a first order system, right and at w,, it starts. Well,
it starts to go down at - 80 dB/decade, ok. So, this is - 20 dB/decade, and this is - 80
dB/decade, and if I just showed you this part of the picture, imagine I covered up everything
outside this blue rectangle right, and I showed you this picture and I asked you, what this red

curve represents, what would you say?

Student: First order system.



Where you say this looks like a first order system. So, what do you call it? So, this basically
is the basic idea behind trying to make, this is how you try to make, I mean, please note that
the red curve corresponds to actually corresponds to a fourth order system, right. But, it looks
like the important frequency range, right, we will come back to what it means to say
important frequency range. Over frequencies of practical interest, it looks like a first order

system, right.
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So, let me label this, this is, you know, 0 dB or 1, ok, alright. So, this pole, this w, is called
the dominant pole and this basically, you know, dominant pole because it basically pretty

much within quotes dominates the frequency response of the loop gain function, right.

So, for all practical purposes, therefore, this ®, is the most significant pole. All the other, this
®, now, you know, as far as we are concerned are poles which are so far away from «,, that
their influence on the frequency response of the system, you know. They only kick in this
particular example when the magnitude of the loop gain function has fallen way at the point
at which the extra poles at ®,, at the three extra poles at ®, kick in, right we see that the

magnitude of the loop gain is way smaller than 1, right.

So, going back to our, you know, our observation that the, we are going to be only in trouble
when the loop gain function becomes close to -1, when the loop gain function becomes close
to -1 and 0 is when the denominator goes to 0, right and, you know, where, and at the

frequency at which the loop gain magnitude goes to 1, in this particular example where the



dominant pole w, is chosen to be so small compared to ®, right, that the frequency at which
the higher poles kick in at that frequency, the magnitude response is already fallen to

something which is very, very small compared to 1, right.

So, at this frequency, what comment at the unity gain frequency of the loop gain, which is the
new unity gain frequency of the loop gain? So, basically the new unity gain frequency of the
loop gain is, is ASf ®, approximately. Why because in this region, this curve can be
approximated by this expression, A;* /(1 + A>f) (1/(1 + s/wy)). So, it is a first order system
with the DC gain of A;’ f and a pole at m4. Does it make sense, alright? And, we know very
well that, at a frequency much greater than ®,, you can neglect that 1 and the unity gain
frequency of this system is A, f ®, d alright. So, at the unity gain frequency of this dominant

pole compensated system. So we have stabilized the system by adding a dominant pole.

So, this is often called dominant pole compensation. And, so, at the unity gain frequency of
the dominant pole compensated system, what common can we make about the angle of the
loop gain? A*/(1 + s/og). What is the, you know, what is the unity gain frequency? A.’ f @,
So, what is the angle of the loop gain at that frequency? It is -tan"'(A,’ f) and is A.* f, a small

number or a large number?
Student: Large number.

Large numbers. So, what is tan"' (A, f)? This is going to be approximately -n/2, which is what
you will see if you had a first order system, correct? Ok. So, if you had a true first order
system, you would see an angle of -, the angle at the, at the unity gain frequency for the loop

gain function would be - 90°, ok.

And as you can see, if the angle of the loop gain is - 90°, what is that loop gain/(1 + loop
gain) at A’ f o, is what? What is the loop gain at A’ f ®,? Loop gain is a complex number.
1£-90°. So, basically it is — j/(1 — j), correct? So, what is the magnitude of this complex
number? 1/72 £-45°. What is that telling you? So, the closed loop gain, remember is 1/f (loop
gain/(1 + loop gain)). At the unity gain frequency of the loop gain function what is the closed
loop gain? It is 1/N2 (1/f) £-45°. And what does this mean? At what frequency will the
magnitude of the gain of an amplifier go to 1/¥2. It is dB bandwidth, right. So, basically this
is something that we knew already, ok and you basically will have, when we worked out the

math, we saw that the unity gain frequency of the loop gain function for a first order system



is the 3 dB bandwidth of the closed loop system, right. This is just us parroting the same

thing all over again, right. There is nothing new here.



