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Lecture ‒ 9 

Small Signal Analysis of Type-I/II/III PLLs for Phase Step, Frequency Step and Frequency 

Ramp 

 

Hello everyone. In the previous session, we talked about the type and order of PLLs and we told 

that the loop filter is a block which decides between different PLL types and orders. 
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So, today we will look at examples of PLL with different types and orders and the reason to choose 

different type and order will become clearer as we go through our analysis. So, let me just recall 

the PLL which we have been using. We had a mixer based phase error detector followed by the 

loop filter which has a transfer function 𝐿𝐹(𝑠) followed by the VCO which has a transfer function 

𝐾𝑉𝐶𝑂

𝑠
 and this feeds back. The input and output are sinusoidal voltages. In our case, we will treat 

them right now as follows: 

𝑉𝑖𝑛 = sin(𝜔𝑖𝑛𝑡) 

𝑉𝑜𝑢𝑡 = cos(𝜔𝑜𝑢𝑡𝑡) 



We drew the small signal model of this particular PLL and the small signal model of the PLL is 

shown here. You have the phase error detector with input phase and feedback phase. The gain of 

the phase error detector is 𝐾𝑃𝐷 followed by loop filter with transfer function 𝐿𝐹(𝑠) which is 

followed by VCO with gain 
𝐾𝑉𝐶𝑂

𝑠
. This is the small signal model of the PLL. This is 𝜑𝑜𝑢𝑡, here 

you are going to get 𝜑𝑒𝑟, output of the phase error detector is voltage, we call this as 𝑉𝑒, output of 

the loop filter is control voltage which is 𝑉𝑐. 

Now, where will this type and order of the PLL matter? It will matter when we apply any change 

in phase or any change in frequency of the PLL and we want to find out whether this PLL will 

remain in lock or it will go out of lock or what will happen. So, one standard method of a closed 

loop feedback system is, let us say you have this closed loop PLL, it is closed loop in nature that 

is why I am calling it as a closed loop and it is in steady state, that means, at time 𝑡 = 0, the rate 

of change of phase error is equal to zero, that is how the PLL is in steady state and input and output 

frequencies are equal. Thus, we have the following: 

At 𝑡 = 0, 
𝑑𝜑𝑒𝑟

𝑑𝑡
= 0 and 𝜔𝑖𝑛 = 𝜔𝑜𝑢𝑡 

So, you have a PLL which is in steady state. 

Now, you apply change in input phase or input frequency and if the PLL still remains in lock which 

means that, at 𝑡 = 0+, I apply a change in the input phase which is ∆𝜑𝑖𝑛 = ∆𝜑𝑖𝑛(0)𝑢(𝑡). This is 

just one kind of change which is applied to the PLL and then we give it enough time such that all 

the transients die out and we look at the PLL in steady state which means that after enough time 

we would like to find out what is the phase error in steady state. Why do we look at the phase error 

in steady state? Because in steady state or as time 𝑡 → ∞, the phase error should not change if the 

PLL is locked. 

So, this is the thing which we are looking at, as 𝑡 → ∞, if the phase error is some fixed value, then 

the PLL will be considered that it is in lock, if this value tends to infinity, then it is like the phase 

error increases with respect to time, it is not locked. We would like to find out this particular phase 

error for different kinds of inputs which will depend on the type of loop filter which we choose. 



So, let us begin with an example. We will consider many examples. First, the loop gain of the PLL 

is given by 𝐿𝐺(𝑠). You see that this is the loop and we are considering when you apply a change 

what comes back, that is the loop gain. This loop gain is given by, 

𝐿𝐺(𝑠) = 𝐾𝑃𝐷 𝐿𝐹(𝑠)
𝐾𝑉𝐶𝑂
𝑠

 

Now, we apply a change at the input which is known as phase step which we will call as input 

phase step here. 

So, we have, 

∆𝜑𝑖𝑛 = ∆𝜑𝑖𝑛(0)𝑢(𝑡) 

In frequency domain or in Laplace domain, you have, 

∆𝜑𝑖𝑛 = ∆𝜑𝑖𝑛(0)𝑢(𝑡)
    𝐿    
→  ∆𝜑𝑖𝑛(𝑠) =

∆𝜑𝑖𝑛(0)

𝑠
 

This is for the step input. So, for this particular case, the error at infinity is given by, 

lim
𝑡→∞

𝜑𝑒𝑟 (𝑡) = lim
𝑠→0
𝑠 𝜑𝑒𝑟(𝑠) 

lim
𝑡→∞

𝜑𝑒𝑟 (𝑡) = lim
𝑠→0
𝑠 

1

1 + 𝐿𝐺
𝜑𝑖𝑛(𝑠) 

Also, you know from this particular loop that phase error in frequency domain is given by, 

𝜑𝑒𝑟(𝑠) = 𝜑𝑖𝑛(𝑠) − 𝜑𝑜𝑢𝑡(𝑠) 

So, you might be seeing here that I am using 𝜑𝑖𝑛(𝑠)and ∆𝜑𝑖𝑛(𝑠) interchangeably, so that is like 

the small change which I am applying. So, we have, 

𝜑𝑒𝑟(𝑠) = 𝜑𝑖𝑛(𝑠) −
𝐿𝐺

1 + 𝐿𝐺
𝜑𝑖𝑛(𝑠) 

So, this expression is clear from here. 
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Now, we have the following: 

lim
𝑡→∞

𝜑𝑒𝑟 (𝑡) = lim
𝑠→0
𝑠 

1

1 + 
𝐾𝑃𝐷 𝐾𝑉𝐶𝑂 

𝑠 𝐿𝐹(𝑠)

∆𝜑𝑖𝑛(0)

𝑠
 

lim
𝑡→∞

𝜑𝑒𝑟 (𝑡) = lim
𝑠→0

𝑠

𝑠 + 𝐾𝑃𝐷 𝐾𝑉𝐶𝑂 𝐿𝐹(𝑠)
∆𝜑𝑖𝑛(0) 

After substituting 𝑠 = 0 here, we get, 

lim
𝑡→∞

𝜑𝑒𝑟 (𝑡) = 0 

So, you applied a phase step input and you found that the error in steady state is going to be zero. 

What does it mean? It means that if I apply ∆𝜑𝑖𝑛(0) here, after some time I will see a change in 

∆𝜑𝑜𝑢𝑡 which is same as ∆𝜑𝑖𝑛(0), so that ∆𝜑𝑒𝑟 becomes zero. That is what you have.  

Also, every PLL we know is Type-I PLL. So, here 𝐿𝐹(𝑠) you can see, it will only be a problem 

when 𝐿𝐹(𝑠) is 𝐿𝐹(0) is equal to zero. Then you have a zero by zero which is not defined, which 

is not the case also. So, for Type-I PLL, I can write,  

lim
𝑡→∞

𝜑𝑒𝑟 (𝑡) = 0, for phase input for Type-I PLL 



It does not matter what order we have here. 
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Now, after this phase step, let us see if I apply another change which is frequency step. When we 

apply a frequency step to the PLL, so here I am going to apply a frequency step at time instant 

𝑡 = 0 which is given by, 

∆𝜔𝑖𝑛 = ∆𝜔𝑖𝑛(0) 𝑢(𝑡) 

We know that, 



∆𝜑𝑖𝑛(𝑡) = ∫∆𝜔𝑖𝑛 𝑑𝑡

𝑡

0

 

Now, in Laplace domain, this frequency step relates to phase ramp as given by, 

∆𝜑𝑖𝑛(𝑡) = ∫∆𝜔𝑖𝑛 𝑑𝑡
     𝐿     
→   

𝑡

0

 ∆𝜑𝑖𝑛(𝑠) =
∆𝜔𝑖𝑛(0)

𝑠2
 

We would like to find out the phase error as 𝑡 → ∞ for the frequency step. This is given by, 

lim
𝑡→∞

𝜑𝑒𝑟 (𝑡) = lim
𝑠→0
𝑠 𝜑𝑒𝑟(𝑠) = lim

𝑠→0
𝑠 
∆𝜑𝑖𝑛(𝑠)

1 + 𝐿𝐺
 

lim
𝑡→∞

𝜑𝑒𝑟 (𝑡) = lim
𝑠→0
𝑠 
∆𝜔𝑖𝑛(0)

𝑠2
×

𝑠

𝑠 + 𝐾𝑃𝐷𝐾𝑉𝐶𝑂𝐿𝐹(𝑠)
 

lim
𝑡→∞

𝜑𝑒𝑟 (𝑡) = lim
𝑠→0

∆𝜔𝑖𝑛(0)

𝑠 + 𝐾𝑃𝐷𝐾𝑉𝐶𝑂𝐿𝐹(𝑠)
 

lim
𝑡→∞

𝜑𝑒𝑟 (𝑡) =
∆𝜔𝑖𝑛(0)

𝐾𝑃𝐷𝐾𝑉𝐶𝑂𝐿𝐹(0)
 

This is the steady state error in the PLL. So far I have not discussed what is 𝐿𝐹(0) but you can see 

very well here that, 

For Type-I PLL: 𝐿𝐹(0) = 1, where 𝐿𝐹(𝑠) =
1

1+𝑠𝜏1
 

For the Type-II PLL with two integrators, the loop filter transfer function is given by, 

For Type-II PLL: 𝐿𝐹(0) = ∞, where 𝐿𝐹(𝑠) =
1+𝑠𝜏𝑝

𝑠𝜏𝑖
 

What is 𝐿𝐹(0)? 𝐿𝐹(0) is actually equal to infinity. If this is the case, then for frequency step, the 

steady state phase error is given by, 

𝜑𝑒𝑟,𝑠 = lim
𝑡→∞

𝜑𝑒𝑟(𝑡) 



For Type-I PLL, the steady state error is given by, 

𝜑𝑒𝑟,𝑠 =
∆𝜔𝑖𝑛(0)

𝐾𝑃𝐷 𝐾𝑉𝐶𝑂. 1
 

For Type-II PLL, the steady state error is given by, 

𝜑𝑒𝑟,𝑠 = 0 

For Type-II PLL, what you see is that the steady state phase error is zero because 𝐿𝐹(0) goes to 

infinity. So, this is interesting that for the same PLL, you have input and output frequencies locked 

and when you apply a simple phase step, you see that in both Type-I and Type-II PLL, the error 

will be equal to zero, but when you apply frequency step, for Type-I PLL there is a steady state 

error, but for Type-II PLL, the steady state error is equal to zero. But keep one thing in mind that 

this particular value, the steady state phase error which you see here does not take into account the 

large signal or you can say the actual voltage signal at each of these nodes. It is only for small 

signal modeling. 

So, why is this important? Well, we have seen earlier that in the model for Type-I PLL which we 

are using, the error voltage is given by, 

Type-I model: 𝑉𝑒𝑟 = 𝐾𝑃𝐷𝜑𝑒𝑟 

But, actually if you remember, the error voltage is given by, 

Actually: 𝑉𝑒𝑟 =
1

2
sin(𝜑𝑒𝑟) 

We have seen this before. I am just repeating it because we are discussing with respect to types 

and orders. 

So, in this model, there is no restriction at all on 𝜑𝑒𝑟 but if you look at it, no matter what 𝜑𝑒𝑟 you 

are going to have, there is a restriction on 𝑉𝑒𝑟. Here if you see, if ∆𝜔𝑖𝑛(0) is large, 𝜑𝑒𝑟 will also 

be large. If I increase ∆𝜔𝑖𝑛(0), 𝜑𝑒𝑟 will increase and it appears that the PLL will always remain 

in lock, whereas actually what you see is even if 𝜑𝑒𝑟 increases, 𝑉𝑒𝑟 is bounded. 



So, if 𝑉𝑒𝑟 does not increase, the control voltage will not increase and you will not be able to get the 

desired frequency change but for small changes which are limited by your modeling here, 𝜑𝑒𝑟,𝑠 

will be valid. In case of Type-II PLL, it does not matter because in steady state you are going to 

have the phase error of zero. You will acquire all the frequency with the help of the other integrator 

in the loop. 
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Well, this is interesting that for Type-I and Type-II PLL, we are able to get that. Now comes 

another question. We applied frequency step, now what happens if I apply frequency ramp. So, 

what do you mean by frequency ramp? It means that ∆𝜔𝑖𝑛(𝑡) is increasing at a fixed rate as given 

below. 

∆𝜔𝑖𝑛(𝑡) = ∆𝜔𝑖𝑛(0). 𝑡 = ∫∆𝜔𝑖𝑛(0) 𝑑𝑡 

So, for frequency ramp, the transfer function in Laplace domain for the change in the frequency is 

going to be, 

∆𝜔𝑖𝑛(𝑠) =
∆𝜔𝑖𝑛(0)

𝑠2
 

For the corresponding change in the frequency, the change in the phase is going to be, 

∆𝜑𝑖𝑛(𝑠) =
∆𝜔𝑖𝑛(0)

𝑠3
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Now, for the desired frequency change of frequency ramp, the change in phase is given by this. I 

need to find out whether the PLL will remain in lock which means I need to find out what is the 

steady state error value. Well, the same principle, nothing changes here, so the steady state phase 

error is given by, 

𝜑𝑒𝑟,𝑠 = lim
𝑡→∞

𝜑𝑒𝑟(𝑡) = lim
𝑠→0
𝑠 𝜑𝑒𝑟(𝑠) 

𝜑𝑒𝑟,𝑠 = lim
𝑠→0
 𝑠 
∆𝜔𝑖𝑛(0)

𝑠3
×

1

1 + 𝐿𝐺
 



𝜑𝑒𝑟,𝑠 = lim
𝑠→0
 𝑠 
∆𝜔𝑖𝑛(0)

𝑠3
×

𝑠

𝑠 + 𝐾𝑃𝐷𝐾𝑉𝐶𝑂𝐿𝐹(𝑠)
 

𝜑𝑒𝑟,𝑠 = lim
𝑠→0
 

∆𝜔𝑖𝑛(0)

𝑠2 + 𝑠 𝐾𝑃𝐷𝐾𝑉𝐶𝑂𝐿𝐹(𝑠)
 

So, I have to substitute 𝑠 = 0, so I will just rewrite it with the remaining terms as follows: 

𝜑𝑒𝑟,𝑠 = lim
𝑠→0
 

∆𝜔𝑖𝑛(0)

𝑠 𝐾𝑃𝐷𝐾𝑉𝐶𝑂𝐿𝐹(𝑠)
 

For 𝐿𝐹(𝑠), I will not substitute because the evaluation depends on the loop filter. So, for the 

frequency ramp, what you see is that it depends on what is the value of the loop filter at 𝑠 = 0.   

For Type-I PLL: 𝐿𝐹(𝑠) =
1

1+𝑠𝜏1
  

For Type-II PLL: 𝐿𝐹(𝑠) =
1+𝑠𝜏𝑝

𝑠𝜏𝑖
  

So, you can substitute 𝑠 = 0 for both the cases. What you are going to see is the following: 

For Type-I PLL, as 𝑠 → 0, 𝐿𝐹(0) = 1 

For Type-I PLL, the steady state phase error is given by, 

𝜑𝑒𝑟,𝑠 = lim
𝑠→0
 
∆𝜔𝑖𝑛(0)

𝑠 𝐾𝑃𝐷 𝐾𝑉𝐶𝑂. 1
→ ∞ 

So, if you have a Type-I PLL, Type-I, Order-1, that is what we have been using, then when you 

apply a frequency ramp to the PLL, the steady state phase error goes to infinity which means that 

the phase error does not settle. The PLL loses lock, it is not locked anymore. For Type-II PLL, the 

phase error in steady state is given by, 

𝜑𝑒𝑟,𝑠 = lim
𝑠→0
 

∆𝜔𝑖𝑛(0)

𝑠 𝐾𝑃𝐷 𝐾𝑉𝐶𝑂
1 + 𝑠𝜏𝑝
𝑠𝜏𝑖

 

As 𝑠 → 0, we get, 



𝜑𝑒𝑟,𝑠 =
∆𝜔𝑖𝑛(0)

𝐾𝑃𝐷 𝐾𝑉𝐶𝑂
𝜏𝑖

 

This is interesting that when you have a frequency ramp or the change in the input frequency is 

given as a frequency ramp, Type-I PLL will lose lock but Type-II PLL will have a fixed phase 

error at the output of the phase error detector given by the above equation. So, this will be the fixed 

value which you have. 

So, we can just look at it here. For Type-I PLL, for phase step, you had zero phase error and Type-

II PLL also has zero phase error. For frequency step, Type-I PLL has a fixed phase error and Type-

II PLL has zero phase error. For frequency ramp, Type-I PLL loses lock as the phase error tends 

to infinity, whereas Type-II PLL has a fixed steady state phase error. So, looking at this trend, you 

may be tempted to think that if I want to make this steady state error equal to zero, then Type-III 

PLL may be a solution, you can increase one order of integrator. 
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So, let us just take that example. Let us say for Type-III PLL, we have the loop filter transfer 

function as given by, 

𝐿𝐹(𝑠) =
(1 + 𝑠𝜏𝑝1)(1 + 𝑠𝜏𝑝2)

𝑠2𝜏𝑖1𝜏𝑖2
 

Right now, all these parameters 𝜏 are just constant, so do not worry about it. What values they will 

pick, we will see that during the implementation, if required. So, for this particular loop filter, for 

frequency ramp, let us calculate the steady state phase error. 

𝜑𝑒𝑟,𝑠 = lim
𝑠→0
 

∆𝜔𝑖𝑛(0)

𝑠 𝐾𝑃𝐷 𝐾𝑉𝐶𝑂
(1 + 𝑠𝜏𝑝1)(1 + 𝑠𝜏𝑝2)

𝑠2𝜏𝑖1𝜏𝑖2

 

𝜑𝑒𝑟,𝑠 = lim
𝑠→0
 

∆𝜔𝑖𝑛(0)

𝐾𝑃𝐷 𝐾𝑉𝐶𝑂(1 + 𝑠𝜏𝑝1)(1 + 𝑠𝜏𝑝2)
× 𝑠 

𝜑𝑒𝑟,𝑠 = 0 

So, for Type-III PLL also, what you see is that even in the case of frequency ramp, the error is 

equal to zero. 
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So, I will just summarize it. So what you have is, we are going to write the steady state phase error 

for Type-I, Type-II and Type-III PLLs when you apply phase step, frequency step and frequency 

ramp. So, when you have phase step, Type-I, Type-II, Type-III PLL, all will give zero. When you 

have frequency step, Type-I will give you 
∆𝜔

𝐾𝑃𝐷 𝐾𝑉𝐶𝑂
. Type-II PLL will give you zero, Type-III will 

also give you zero. 



When you have frequency ramp, Type-I PLL will give you steady state phase error as infinity, that 

means the PLL is not locked. Type-II PLL is going to give you 
∆𝜔

𝐾𝑃𝐷 𝐾𝑉𝐶𝑂
𝜏𝑖

. 

And for frequency ramp, Type-III PLL will still give you zero. So, based on what you would like 

to do with the PLL, whether you would like to apply phase step, frequency step or frequency ramp, 

you can choose the type of the PLL. And type and order of the PLL will depend on what kind of 

tracking do you want, so based on that you make a choice. Then, you may ask that why I did not 

have only 𝑠2, why I needed to have 𝑠𝜏𝑝1 and 𝑠𝜏𝑝2. Similarly, for the case of Type-II PLL, why I 

had 𝑠𝜏𝑝? Well, all these things are required to stabilize the loop. We will see the stabilization in 

the upcoming sessions. Thank you. 

 


