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In the previous session, we looked at the operation of a PLL block diagram depicting the simple 

implementation of the PLL. Today, in this session, we will try to relate the small signal analysis 

of the PLL with respect to the full simulation of the PLL. So, now consider the previous 

example which we had. We have this small signal block diagram with our LF (s) and VCO. So 

now, I have some plots here. I will tell you how we relate these two things. So, assume this is 

a small signal diagram and that the frequency of the oscillator is the same as the frequency of 

the input. 

So, at t = 0, we have the following:  

𝜔𝑜𝑢𝑡 = 𝜔𝑖𝑛 = 𝜔 = 2𝜋 × 45 Mrad/s 

There was no frequency error. Even the input phase and the output phase were matched. Thus, 

we have,  

𝜑𝑖𝑛 = 𝜑𝑜𝑢𝑡, 𝜑𝑒𝑟(𝑡 = 0) = 0, 𝑉𝑐 = 0, 𝑉𝑒 = 0 



These are all the initial conditions. So, this is like we are talking about a PLL where the input 

and the output frequencies are same, there is no phase error to begin with, the error voltage and 

the control voltage are zero. 

Now, in this case, we apply a frequency step at 𝑡 = 0+, you can say. I applied a frequency step 

at 𝜔𝑖𝑛. So, I have the following: 

∆𝜔𝑖𝑛 = 2𝜋 × 5 Mrad/s 

You might be worrying that why it is 2𝜋 × 5 always. This is because I just want to give you 

an explicit number which is easy for calculation where this is 2𝜋, this converts from frequency 

to radians and this is frequency. So, if you are asked the frequency in Hertz, this is like 5 MHz 

here. There is 5 MHz frequency error between the input and the output or if you want to convert 

into radians, it is 10𝜋 Mrad. So, just after t equal to 0, we applied a frequency step of 5 MHz 

or 10𝜋 Mrad at the input. Then, what is going to happen? If we assume that this particular 

system operates in a linear manner, then what are we going to have? This is plus, this is minus, 

the phase error is going to be with respect to the frequency error. So, as soon as we have the 

frequency error at the input, you are going to get the phase error. 

So, you can analyze this particular thing. When I have a frequency error at the input, how is 

my input phase related to the input frequency? We know, 

𝜑𝑖𝑛 = ∫ 𝜔𝑖𝑛 𝑑𝑡 

So, if I apply a frequency step, effectively I am doing the following: 

𝜑𝑖𝑛 = ∫ ∆𝜔 𝑑𝑡

𝑡

0

 

That is how the input phase will keep on increasing. As the input phase keeps on increasing, 

you are going to have error voltage, you are going to have phase error, here you are going to 

have error voltage and finally control voltage and output phase will change. 

So here, now, I will just write the gain of each block we know. Initially the phase error was 

zero. So, the PLL was locked. 𝐾𝑃𝐷 =
1

2
 rad/V. When the phase error is equal to zero, we have 

seen the gain of the phase error detector. The loop filter which we are choosing has transfer 

function given by, 



𝐿𝐹(𝑠) =
𝑉𝑐(𝑠)

𝑉𝑒(𝑠)
=

1

1 + 𝑠𝑅𝐶
 

and 𝜑𝑜𝑢𝑡(𝑠) is given by, 

 𝜑𝑜𝑢𝑡(𝑠) =
𝐾𝑉𝐶𝑂

𝑠
 

These are the transfer functions. So, you can analyze this block using the linear gain model, so, 

we will do it one by one. So, let us find out, from 𝜑𝑖𝑛 to 𝜑𝑜𝑢𝑡, what is the gain in the closed 

loop. 
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I will draw the loop gain model for this. So, given the PLL which you see in this particular 

case, the model for this is going to be, I am just writing in terms of gain, so, I have 
1

2
, 

1

1+𝑠𝑅𝐶
, 

and  
𝐾𝑉𝐶𝑂

𝑠
. This is 𝜑𝑖𝑛, this is 𝜑𝑜𝑢𝑡. One interesting thing you will find out here which is that 

this particular model or the small signal model is the same for 𝜔𝑖𝑛 and 𝜔𝑜𝑢𝑡, it does not change. 

So, here I will first write between 𝜑𝑖𝑛 and 𝜑𝑜𝑢𝑡. So, here I will have the small signal closed 

loop gain as, 

𝜑𝑜𝑢𝑡

𝜑𝑖𝑛
=

𝐿𝐺

1 + 𝐿𝐺
 

The loop gain is equal to multiplication of all these blocks and is given by, 

𝐿𝐺 =
1

2
 

1

1 + 𝑠𝑅𝐶
 
𝐾𝑉𝐶𝑂

𝑠
  

We also know, 

𝜑𝑜𝑢𝑡(𝑠) =
𝜔𝑜𝑢𝑡(𝑠)

𝑠
 

𝜑𝑖𝑛(𝑠) =
𝜔𝑖𝑛(𝑠)

𝑠
 

So, this gain model is the same as 
𝜔𝑜𝑢𝑡(𝑠)

𝜔𝑖𝑛(𝑠)
=

𝐿𝐺

1+𝐿𝐺
. It is interesting to realize this.  

Now, if we applied a unit step in frequency, where did we apply that? We said ∆𝜔 at t=0, you 

just gave the input frequency step, this input frequency step can be analyzed using this loop 



and finally, I can calculate both the terms. So, what we want to know from all this analysis is 

that if I use the small signal model right now, the final error which I am going to get, when you 

apply any input, control voltage and error voltage will change, but as time passes by, you give 

it enough time in steady state when no more voltages or phase values are changing, you have 

reached the steady state. So, what will be this error value in steady state? So, what we are 

looking here is, as time t tends to infinity, what is my error value? You can find this error value 

using the final value theorem as follows: 

lim
𝑡→∞

𝜑𝑒𝑟(𝑡) = lim
𝑠→0

𝑠 𝜑𝑒𝑟(𝑠) 

where, 

𝜑𝑒𝑟(𝑠) = 𝜑𝑖𝑛(𝑠) − 𝜑𝑜𝑢𝑡(𝑠) =
𝜑𝑖𝑛(𝑠)

1 + 𝐿𝐺
 

So, we got this and we applied a frequency step here to the system. So, I will write it in terms 

of the frequency transform. 

∆𝜔𝑖𝑛(𝑡) = ∆𝜔(0) 𝑢(𝑡) 

∆𝜔𝑖𝑛(𝑠) =
∆𝜔(0)

𝑠
  

This is the frequency change which you applied. So, the phase change which I am adding to 

my system is given by, 

𝜑𝑖𝑛(𝑠) =
∆𝜔(0)

𝑠2
 

So,  

lim
𝑡→∞

𝜑𝑒𝑟(𝑡) = lim
𝑠→0

 𝑠 
𝜑𝑖𝑛(𝑠)

1 + 𝐿𝐺
 

lim
𝑡→∞

𝜑𝑒𝑟(𝑡) = lim
𝑠→0

 𝑠 
𝜑𝑖𝑛(𝑠)

1 +
1

2
 

1

1+𝑠𝑅𝐶
 
𝐾𝑉𝐶𝑂

𝑠

 

lim
𝑡→∞

𝜑𝑒𝑟(𝑡) = lim
𝑠→0

 𝑠 
∆𝜔(0)

𝑠2

1

1 +
1

2
 

1

1+𝑠𝑅𝐶
 
𝐾𝑉𝐶𝑂

𝑠

 

lim
𝑡→∞

𝜑𝑒𝑟(𝑡) =
∆𝜔(0)

𝐾𝑉𝐶𝑂

2

 

So, we applied a frequency error. In response to the frequency error, the phase error changes. 



So, let us just calculate. The error which we applied in this case was only 5 Mrad/s.  

lim
𝑡→∞

𝜑𝑒𝑟(𝑡) =
∆𝜔(0)

𝐾𝑉𝐶𝑂

2

=
2𝜋 × 5 Mrad/s

2𝜋 ×
100

2

Mrad

s
/V × V/rad

= 0.1 

𝜑𝑒𝑟

2𝜋
= 0.0159 

So, we did all this math and now if I say that this is the value after doing small signal analysis, 

I go and simulate my PLL in the same way as we did in the previous session, you see that  
𝜑𝑒𝑟

2𝜋
= 0.01594. This is the thing which I would like to emphasize that in the previous example, 

when we had the phase error, frequency error to begin with, we went through time domain 

analysis and we figured out what will be the actual error voltage, control voltage and so on and 

you understood the different plots which we had. 

In this case, we adopted a different approach and the approach was that you start with the small 

signal model of the PLL, you apply some input, based on the input, you calculate the phase 

error and you try to match the phase error and frequency error, and the error voltage that you 

have with the transient simulations. And what you find here is, 
𝜑𝑒𝑟

2𝜋
= 0.01594, this is what we 

calculated and the error voltage if you look at, this is 0.05. It will be easy for you to recall that, 

Ve = Vc =
∆𝜔

𝐾𝑉𝐶𝑂
=

2𝜋 × 5 Mrad/s

2𝜋 × 100 Mrad/s/V
= 0.05 V 

Is it not interesting that you did such complicated time domain simulations, and you found that 

voltage whereas when we did this small signal analysis, we found the final error voltages and 

currents? 

So, now the question which we have is that whether we should go with the time domain analysis 

or this small signal model is good to do all kinds of analysis, whether we apply a phase change 

or frequency change or there are any limitations. So, these are the things which we need to 

understand and let me tell you the small signal model of the PLL is a simplified model of the 

PLL. It does not have any limitations so far. 

In this particular model, whatever phase error I need, I will get. Whatever voltage I need, I will 

get. This is because as per this analysis, if we applied a larger frequency error, we would have 

got a larger error voltage, there is no limitation to it. But, in actual model, there are limitations. 



(Refer Slide Time: 19:22) 

 

 

What kind of limitations are those? Well, to begin with, I can tell you that just think about it, 

you calculated that, 

𝑉𝑒𝑟 =
1

2
sin(𝜑𝑒𝑟) 

So, if this is the case that the error voltage is like this, then you will surely know that, 

−1

   2
≤ 𝑉𝑒𝑟 ≤

1

2
 

The error voltage is always bounded between 
−1

   2
 and 

1

2
, it cannot go beyond this limit. 

If your small signal model somehow tells you that 𝑉𝑒𝑟 >
1

2
 or 𝑉𝑒𝑟 <

−1

2
, that means you should 

not take that as a value, use it, say that the PLL locks and this is the final error voltage or control 



voltage. No, that is not the case. There is a hard limit on the error voltage which you can have 

in this particular implementation. 

How we can overcome that, that we will see in the upcoming sessions. The other important 

thing here is that if I change the loop filter transfer function, then you know that the final value 

of the error voltage which I am going to have actually depends on the loop filter DC component 

because we substituted s as 0 here. So, the loop filter plays a very important role in getting the 

final value. So, we will look at the loop filter also and how the loop filter restricts our analysis 

or the final PLL output. Thank you. 


