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Lecture − 64 

Analog/Digital Hybrid PLL: Part II 

Hello everyone. Welcome to this session. In the previous session, we looked at the digital PLL, 

the block diagram of the digital PLL and later we went to the hybrid PLL to undo the 

quantization noise of the TDC in the proportional path. So, let us begin with that and see how 

we are going to implement it. 
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So, this is hybrid PLL, analog/digital, you want to write it, you can write it like this 

analog/digital PLL. So, here, we had PFD, the implementation of the PFD we have seen and 

then you had this feedback path from here. The PFD output goes to a DAC which I call as 

proportional path DAC or PDAC. The output of the PDAC goes to the oscillator and this I have 

been using a current controlled oscillator, for example. 

The output of PFD also goes to a TDC. Quite often this is a 1-bit TDC. The output of the TDC 

goes to a digital loop filter. You can have gain if you want and then this is 1 − 𝑧−1 

implementation. The output of the digital loop filter goes to a DAC which is IDAC, current 

DAC in the integral path and this is what you have. Then the output of the VCO feeds back 

through a frequency divider. 



So, here, what we have seen earlier is the implementation of the phase frequency detector, the 

TDC using delay elements or using a single D flip-flop, your current controlled oscillator also. 

So, this is your OUT. So, just think about it how we are going to control the current controlled 

ring oscillator using our proportional DAC such that there is no quantization noise. So, the 

oscillator which you have while discussing the oscillator here, the ring oscillator in our case. 

Now, let us call this as 𝑉𝐷𝐷𝑜𝑠𝑐  and you have current flowing through the oscillator. It will have 

a certain frequency whether you control 𝐼𝑜𝑠𝑐  or you control 𝑉𝐷𝐷𝑜𝑠𝑐, if either of these two 

parameters, control parameters 𝐼𝑜𝑠𝑐 or 𝑉𝐷𝐷𝑜𝑠𝑐 is same, the frequency will remain same in both 

the cases whether the control is 𝑉𝐷𝐷 or current, the other will just follow. So, this particular 

𝐼𝑜𝑠𝑐 can be controlled using a current DAC and that is what effectively your IDAC is doing. 

So, you can have a current DAC let me just make it here with switches. So, in the previous 

session, we looked at that. I can have multiple current sources and the output of these current 

sources, that is actually fed to the oscillator. So, this is 𝐼𝑜𝑠𝑐, I will just bring it down. So, this 

current source is fed to the oscillator like this. You are controlling the current. This control of 

the IDAC, this is your IDAC by the way and the digital bits which are coming 𝐷𝐼, they are 

going to control this. 

Now, with respect to UP and DN signals, the way we can control these current sources that we 

have considered that you have these switches here, these three switches here and then all are 

biased with a certain bias voltage such that when the switch is closed, at that time the current 

in each branch is 𝐼𝐵𝑊, if the switch is closed. Then this switch is controlled by your UP and 

DN signals. 

So, during the off-state when the UP and DN signals both are low, at that particular time, you 

have only one switch closed. So, this is like you can say that there is a fixed current which is 

flowing here when you are having your UP and DN signals low. So, let me just first write it 

here what we want to achieve. Here with respect to your UP and DN signals, the current is not 

actually 0 or a large value, it is, so, you have this PDAC. 

The output of the PDAC is like this. You have these UP and DN signals coming in. If I call the 

total current output which I will write this as 𝐼𝑃, the 𝐼𝑃 current has the following format. So, 

you are having UP, DN and 𝐼𝑃, the current which comes out of this proportional DAC. When 

your UP is high and your DN is actually 0, this is one case or when your UP is 0 and DN is 1, 

these are the two cases and when this happens. 



So, in this case, what will happen here is when UP is high, the total current which you would, 

which you are going to have is 𝐼𝐵𝑊. When your DN is high, the current is 0 and when you have 

both as 0, at that time the current is 𝐼𝐵𝑊. So, what you are going to have is when both the signals 

are 0, at that time the fixed amount of current 𝐼𝐵𝑊 flows through the proportional path. When 

your UP signal is high, you are having the phase error which is positive and you would like to 

increase the frequency, the current increases. 

So, from here, if I just write the ∆𝐼, you are having +𝐼𝐵𝑊 and when your DN signal is high, 

your ∆𝐼 is −𝐼𝐵𝑊 from the steady state. So, this is the logic which we need to implement here. 

So, let me just say when your UP is high and DN is zero, that time the total current should be 

2I. So, I give 𝑈𝑃̅̅ ̅̅  signal, when UP is high, 𝑈𝑃̅̅ ̅̅  is low, at that time you have 𝐼𝐵𝑊 coming in. 

And when you are having your UP is 0 and DN is high, at that time the current flowing through 

this particular logic is actually 0 only. So, if you look at it, you will have when DN is high, it 

is here. Now, in this case, just look at it that when UP is high and DN is also high, what happens 

in this format and this when UP is 0 and DN is 0. So, the thing which we have so far confirmed 

is when UP is high and DN is 0, UP is high, DN is 0, you get 𝐼𝐵𝑊 here and there is no current 

in this branch whereas when UP is 0, there is no current in this branch and there is no current 

also in this branch. 

So, the total current is what you are getting is +𝐼𝐵𝑊. You are getting 𝐼𝐵𝑊 and the other one 

which you are getting is zero. In case when UP is 0 and DN both are 0, so if UP is 0 and DN is 

0, then you will have 𝐼𝐵𝑊 current flowing through this and there is no current here because UP 

is 0, 𝑈𝑃̅̅ ̅̅  is 1, this value is 0. So, 𝐼𝐵𝑊 flows when UP is 0, DN is 0. 

When UP is 1 and DN is 1, in that case, UP is 1 and DN is 1, this switch is open, this switch is 

closed, you have 𝐼𝐵𝑊 from here and you have 0 current from here, from this branch. So, let me 

just write it this way that you are having if UP is 1 and DN is 1, then you have 𝐼𝐵𝑊 current 

flowing in this branch and 0 from here. 

So, in both these cases whether UP is 0 and DN is 0, you have 𝐼𝐵𝑊 current. When UP is 1 or 

DN is 1, then also you have 𝐼𝐵𝑊 current. When UP is 1 and DN is 0, then you have 2𝐼𝐵𝑊 current 

total and when UP is 0 and DN is 1, then you have 0 current at the output. 

Now the third switch which I have actually added here, this is for giving some amount of bias 

current in case you need. In case you need an extra current to bias the oscillator, you can always 



have the same amount of current and this switch is always closed. So, this is an always close 

switch. So, just to understand this more clearly, I will now draw these switches controlled like 

this. 

These are the switches and then the third one is something which you can always have as a 

fixed, always fixed bias current which is flowing through the oscillator and then you have the 

actual current sources. You can have different multiplication factor here. So, the size can be Y, 

here the size can be X in both the cases and they are controlled by your 𝑉𝑏𝑝, this is 𝑈𝑃̅̅ ̅̅ , this is 

DN. So, the total current which you are looking at here is 𝐼𝑃 and when it is on, it is biased at 

such a voltage that the current which flows is 𝐼𝐵𝑊. 

So, now, just look at it for the case when your UP is 0 and UP goes high, then you have like 

this, just a waveform here to tell you how this 𝐼𝑃 changes actually and similarly I will show 

you for the other case, this is one and then the other DN signal is like this for example, just an 

example here, this is UP and DN. 

So, I am looking at 𝐼𝑃. So, when UP is 0 and DN is 0, that means you will have this transistor 

on, the current which flows, right now you remove this, just discard this extra current from the 

third branch, you only look at 𝐼𝑃, this is the control which you are having. So, 𝐼𝑃 = 𝐼𝐵𝑊. This 

is 𝐼𝑃 and this value is 𝐼𝐵𝑊. 

When your UP goes high which means 𝑈𝑃̅̅ ̅̅  goes low, when 𝑈𝑃̅̅ ̅̅  goes low and DN still remains 

low, then you have extra current coming from this transistor, the total current will increase to 

2𝐼𝐵𝑊. When UP and DN both become 1, at that time these two transistors will exchange their 

roles and the current will still be 𝐼𝐵𝑊. 

It will remain 𝐼𝐵𝑊 like this. When your DN signal goes high first and UP still remains low, 

both these transistors are turned off and the current actually becomes 0 and then when your DN 

signal remains 1, UP signal goes high, this transistor turns on and the current becomes 𝐼𝐵𝑊 and 

it remains 𝐼𝐵𝑊, the role only changes. 

So, what you are seeing here is that from the bias point, you are seeing +𝐼𝐵𝑊 and here you are 

seeing −𝐼𝐵𝑊 and this phase error whatever phase error you have from the PFD, this phase error 

is converted to your 𝐼𝐵𝑊 for that time which is going to change your oscillator’s frequency. 

So, we also define 𝐾𝐶𝐶𝑂, the gain of the oscillator with respect to the current. The units are 

going to be you can say rad/s/A. It is the current gain, it is defined as, 



𝐾𝐶𝐶𝑂 =
𝑑𝜔𝑜𝑢𝑡

𝑑𝐼𝑜𝑠𝑐
 

Now, IDAC is controlled in this manner because there are many bits. PDAC has the pulse width 

modulated signal. This is the best way to control the oscillator’s current without having any 

quantization noise in the proportional path. So, given this, now you see that the control through 

the proportional path is going to be your 𝐼𝐵𝑊 times the phase error. 
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So, I will just draw the small signal model of the PFD now which has this phase error, + and -

, the phase error you have if you look at the average current which flows out of this proportional 

DAC, that is going to be 
𝐼𝐵𝑊

2𝜋
 with respect to the phase error. This is the same thing which you 

had in case of your PFD output with 𝐼𝐶𝑃𝑅. 
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If you recall your voltage control ∆𝑉𝑐𝑡𝑟𝑙, let me just put it back here, your ∆𝑉𝑐𝑡𝑟𝑙 because of the 

proportional path was in this case it would have been 𝐼𝐶𝑃𝑅 and this would have been 0 and this 

case would have been −𝐼𝐶𝑃𝑅 whatever your charge-pump current is, that was the proportional 

path gain, this is the voltage and 𝐼𝐶𝑃𝑅𝐾𝑉𝐶𝑂 gave you the change in the output frequency. 
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Now, similarly, what we are going to have here is the gain is here 𝐼𝐵𝑊 because that is the change 

by which the output current changes. So, we have this phase error, gain 
1

2𝜋
 and from here it 

changes, you have this 𝐼𝐵𝑊, this goes to your VCO but the VCO has the other factor also 

coming in from the integral path. 

So, here I will write this as 
𝐾𝐶𝐶𝑂

𝑠
. The output of the PFD what you are looking at for the phase 

error detector, that particular PFD output goes to your TDC, so you have 𝐾𝑇𝐷𝐶 here, then you 

have this transfer function which is 
𝐾𝐼

1−𝑧−1
, then you have IDAC where you will have the gain 

of the IDAC. 

So, I will write that as your 𝐾𝐼𝐷𝐴𝐶 and all these things actually add up at the CCO’s input. So, 

this comes here, this comes here and this is your output. Here, you have ÷ 𝑁. This is your 𝜑𝑅𝐸𝐹 

and this is your 𝜑𝑂𝑈𝑇. So, in this particular case, what you see is, well, the loop gain is given 

by, 

𝐿𝐺(𝑠) =
1

2𝜋
[𝐼𝐵𝑊 + 𝐾𝑇𝐷𝐶

𝐾𝐼

1 − 𝑧−1
𝐾𝐼𝐷𝐴𝐶]

𝐾𝐶𝐶𝑂

𝑠

1

𝑁
 



This is the loop gain and from our discussion in the previous session, the bandwidth of this 

PLL is actually your proportional path gain. We worked it out earlier. 

So, proportional path gain or you can say bandwidth of the PLL, this is hybrid PLL, 

analog/digital PLL, is your proportional path gain which is given by, 

𝐵𝑊𝑃𝐿𝐿(𝜔) =
1

2𝜋

𝐼𝐵𝑊𝐾𝐶𝐶𝑂

𝑁
 

Now, you may realize why I used the term bandwidth initially because that actually turns out 

to be defining the bandwidth of the PLL. 

So, if you want to increase the bandwidth of this PLL, then you have to increase this current 

source the PDAC gain by changing the current in the proportional DAC. You can work this out 

the whole loop gain and other things, what you will find is that the exact calculation will also 

give you bandwidth which is quite close. 

So, now, given this hybrid PLL analog and digital PLL and the proportional and digital path 

control, let us look at how we are going to control through this IDAC because this IDAC 

normally has a problem of your resolution versus range trade-off. So, what is typically done, 

so, let us just if we just consider the IDAC path and the CCO. 
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So, we will only look at IDAC and the current controlled oscillator. So, what we have here is 

a large number of bits coming from the digital accumulator going to a current DAC, this current 

DAC directly controlling the current in the oscillator or you can say the frequency of the 

oscillator. So, here I will call this as 𝐼𝐼𝑁𝑇. So, now converting from 𝐷𝐼 to your IDAC, the thing 

is that the total current which is required for the oscillator to oscillate at a given frequency in 

our case. 

So, we also see that there is an additional current which is flowing in is 𝐼𝐵𝑊 coming from the 

proportional path. So, total current this is 𝐼𝐼𝑁𝑇 and this is 𝐼𝑡𝑜𝑡𝑎𝑙 or 𝐼𝑜𝑠𝑐. So, we have, 

𝐼𝑜𝑠𝑐 = 𝐼𝐼𝑁𝑇 + 𝐼𝐵𝑊 

There will be a limitation on 𝐼𝐵𝑊 because the bandwidth which you can have is limiting your 

𝐼𝐵𝑊. 

So, we all know that the bandwidth of the PLL here is, 

𝐼𝐵𝑊𝐾𝐶𝐶𝑂

2𝜋𝑁
≤

𝜔𝑅𝐸𝐹

10
 

So, this is going to limit your 𝐼𝐵𝑊 and quite often it may not also always be possible to have 

this bandwidth as the optimized bandwidth. Your actual bandwidth may be even lesser than 

that. So, 𝐼𝐵𝑊 is limited. 

So, for the oscillator to oscillate at a given frequency, a major portion of this total current comes 

from 𝐼𝐼𝑁𝑇. Now, when the major current is coming from this 𝐼𝐼𝑁𝑇 path, the problem is that all 



this current is based on the DAC which we are using right now. So, just take an example, if I 

have 10 bits at the input. 

So, these 10 bits which you are having, you need to convert this using a 10-bit DAC, we saw 

this thing in the previous session that I need to have the current sources like this. We looked at 

this in the voltage DAC. Now, I am looking at this in the form of a current DAC. A minimum 

of 10 unit elements are required, 10 elements are required such that the current is 𝐼0, 2𝐼0 and 

similarly 29𝐼0 and then these switches are controlled by your 𝐷𝐼. 

Now, the problem here is the following, in steady state, your TDC which you have seen before, 

this particular TDC will keep on having because if you want to use 1-bit TDC or any other, in 

the locked state, you will keep on flipping the TDC output between 1 or 0. Let us say even the 

last bit will keep on flipping 1 or 0 which will keep on changing your current or your 𝐷𝐼 by a 

minimum of ±
1

2
LSB. 

So, in the locked state, 𝐷𝐼 may switch between ±1LSB or it can also have, in the steady state 

whatever value it has, it may switch between ±1LSB or between 0 and LSB and that way your 

current is going to be switching between whatever 0 and 𝐼0. So, you can say −
𝐼0

2
 to +

𝐼0

2
 and if 

the changes are a little more, then you will have maybe few LSBs ± few LSBs. 

So, what happens is that in response to this minimum LSB size which you are having, this 

current actually changes if I write from the integral path point of view, we have, 

∆𝐼𝑜𝑠𝑐 ≥ 𝐼0 

Every clock cycle, ∆𝐼𝑜𝑠𝑐 is changing by 𝐼0. So, you can say there is 0 or 𝐼0 or −𝐼0 to +𝐼0, that 

is the minimum, it is always going to be greater than that which implies that, 

∆𝐹 ≥ 𝐼0. 𝐾𝐶𝐶𝑂 

This is the change in the output frequency. So, if you have an oscillator where your frequency 

is changing randomly but every other cycle it is changing by 𝐼0. 𝐾𝐶𝐶𝑂, this is going to create 

deterministic jitter or you can say this will increase jitter at the output, at PLL’s output. Why 

does it increase? Because steady state requires some fixed value of current but the current 

whatever that fixed value is, from that fixed value, the current is always changing like this. 

 



So, I can write that in steady state,  

𝐼𝑜𝑠𝑐 = 𝐼𝑓𝑖𝑥𝑒𝑑 ± 𝑛.
𝐼0

2
 

where 𝑛 = 1, 2, 4 or so on. So, this is going to create the change in the frequency and if your 

frequency changes every other clock cycle, you will have the additional jitter at the output. The 

way to address this is that I go and keep on reducing my 𝐼0. The way I have told you that I am 

having 10 bits but actually the bits which are coming from your integral path are many more 

because you are integrating it whatever bits you have. 

If you are having 10 bits and you are implementing in this manner, that is the max which you 

can do. Now if I say I am going to reduce my 𝐼0, if I reduce 𝐼0, then what happens is the total 

range of the frequency variation by IDAC reduces. What is the total range? The range of IDAC 

is given by, 

Range of IDAC = 2𝑛. 𝐼0 

In our case, it is 210. 𝐼0. 

So, if I am going to reduce 𝐼0 to reduce this jitter, then I am reducing the range of the frequency 

which can be controlled by IDAC. So, there is a range versus you can say resolution or range 

versus jitter trade-off due to IDAC, this you will see. There is one other problem. The other 

problem is implementing the way I have shown you this is like a binary DAC where each 

current source is actually having 2𝑛 times the current value. 

Now, this DAC itself suffers from a lot of non-linearity. So, it is like this when you are 

switching from 63 unit elements to 64 unit elements, all the LSBs have to be turned off and 

only one MSB turns on. So, this is the point where you will mostly see errors, big errors, then 

if you are just switching like from 13 to 14, if only one LSB switches, then the error is different 

though. 

So, example is for the IDAC switching from 63 back and forth to 64 will give you large errors 

in this kind of DAC implementation whereas if you are switching from 4 to 5 where only one 

LSB switches, not all the current cells switch, that will give you small error. So, error actually 

depends on though it is only one LSB switching but it depends on which bits are being 

switched. 



And in order to make sure that there are no errors or the errors are limited, well, you have to 

have a lot of matching requirements. Even then such problems will exist. So, what other thing 

is done to implement this DAC is to have better linearity that all these elements they are having 

the same unit element. So, if this is controlled by 𝐷0, then you can have binary input, but the 

control is more of a thermometer one. 

So, this is 𝐼0, this is also 𝐼0 and this is also 𝐼0 and these two are controlled by 𝐷1 bit. Similarly, 

you are going to have four current sources like this for 𝐷2 control and all the current sources 

are like this. So, you have to spread it out and if you implement in this particular manner, then 

the matching between the current sources is good. 

The errors while switching from one LSB to the other LSB, one value to the other value while 

changing only one LSB will be minimum but as you go ahead and do this, the number of unit 

elements which you need to have will just increase in the order of 2𝑛. So, you can see now for 

10 bits, I need to have 210 =1024 elements which is a problem. 

So, looking at both of these things, what we do is the previous approach is a good approach in 

terms of minimizing the errors but it is quite cumbersome to implement and manage the 

matching between them. 
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So, what is done is that your 𝐷𝐼 which is coming from the, this is a digital signal which is 

coming from the integrator is actually quantized using a digital delta sigma modulator. So, do 

not worry much about it. I will tell you the basic operation. So, you can say 𝐷𝐷𝑆𝑀. This is 

implemented using the thermometer DAC as you see here. This is by the way you can call this 

as a thermometer DAC. This is implemented using a thermometer DAC here and this will give 

you the current. If you want to convert into a voltage, you can convert it into a voltage. 

Now, what is happening while going from 𝐷𝐼 to 𝐷𝐷𝑆𝑀? So, going from 𝐷𝐼 to 𝐷𝐷𝑆𝑀, what delta 

sigma does is, this is a digital delta sigma modulator which takes this whole like a 10 bit number 

and it may give you depending on what you want, a 4 bit number or a 5 bit number, a lower bit 

number. 

So, specifically what we are saying is this. Just think it in this way that 𝐷𝐼 range whatever these 

digital bits you need to think, you are having 1023 here, these are the levels for digital, I am 

writing their decimal equivalent. So, there are 1023 intervals here. You convert this whole unit 

to only let us say few intervals. If I am saying 4 bit, we are having only I need to have more, 

but we need to have only 15 intervals. 

So, the range is maintained in both the cases, but here you have 1020 is just an easy number, 

1024 levels, here you have only 16 levels for a 4 bit. It is effectively saying I want to match the 

total current. So, for example, if this 𝐷𝐼 bit while going through an ordinary DAC would have 

given me, 𝐷𝐼 digital control going through ordinary DAC would have given me a current range 

of 1023𝐼0. 

 



Even 𝐷𝐷𝑆𝑀 going through an ordinary DAC should also give me 1023𝐼0. It should, this range 

is maintained, just that is the important part, but this here is a 10 bit number and this here is a 

4 bit number. You can think about it, the easiest way to do is that I take this 10 bit number 𝐷𝐼. 

So, I am having this 10 bit number coming in, I drop 6 LSBs and I just take 4 MSBs and I 

control the same IDAC. 

So, if you have only 4 MSBs, then you need only 4 binary weighted current sources or maybe 

16 current sources which are with the same unit element. So, this is one way of changing from 

a 10 bit number to a 4 bit number while maintaining the range. The other way is that you change 

using delta sigma. The difference between this method and delta sigma method is that when 

you are dropping the bits like this from the actual value, you are having a quantization error 

added to the signal because the actual signal is this but you are representing by only 4 MSBs. 

So, whatever is the rest, that appears to be, that is now a quantization error. 

Similarly, when you are converting from 𝐷𝐼 to 𝐷𝐷𝑆𝑀, you will also see the quantization and the 

only difference is that this quantization error when you are going to see at 𝐷𝐷𝑆𝑀 output, this 

quantization error is noise-shaped. So, we will not go into the detail of how this noise shaping 

happens. You can very well read about it. The idea is that you convert a large bit number to a 

smaller bit number using delta sigma such that you shape the quantization noise while 

converting from the larger number of bits to a smaller number of bits. 

And this delta sigma modulator actually operates at a certain clock. Depending on what the 

clock frequency is, you will see the noise shaping, but for now, you can say that this is a 

technique which is used to reduce the number of bits. Now, implementing a 4-bit thermometer 

DAC here is much easier than implementing a 10-bit thermometer DAC. 

Now, given this that I can control the PLL in this manner, let us just put everything back and 

then talk about how we have actually solved the problems or what are the problems remaining. 

So here, now what we have done is this PDAC is something we know now, so, let me just do 

this. Your UP and DN signals, they are going to come to an oscillator and this is 𝐷𝐼. 

So, this 𝐷𝐼 is going through a digital delta sigma modulator, this is clocked. The output of this 

digital delta sigma modulator will mostly have lower number of bits 𝐷𝐷𝑆𝑀. This goes through 

a thermometer DAC like I will just give you some block representation of that. This 

thermometer DAC is like switches with currents. By the way, you can also convert this to a 

voltage and use that. So, this DAC now controls your oscillator. 



Similarly, your UP and DN signals which are coming, you can control it in this manner that 

you get 𝑈𝑃̅̅ ̅̅  here and DN here and these two are control, you can have a fixed bias current if 

you require, this is a bias voltage 𝑉𝑏𝑝, these two are also going to give the current here. So, this 

block is your proportional DAC and the other block is your integral DAC. So, these two signals 

come here. So, what we have done so far is we have simplified, or you can say now we know 

how to control our PLL using these current DACs. So, this is thermometer. 

Now, the problem as you go on implementing and realizing a certain resolution, mostly you 

will not feel that much of an issue with the proportional DAC. But with IDAC implementation, 

the range versus resolution trade-off will always be there. So, you come up with some other 

ways, you can give extra current as required. That will be for you to read about and then you 

can actually create, you can have an extra DAC which feeds into this oscillator, that is perfectly 

fine. 

Now, when we are going to model this PLL, there is one thing which we have not added so far 

that this node though we are controlling only the oscillator current, this node actually comes 

with a good amount of capacitor. It is not that this node is you have 𝐼 and that it directly goes 

through the, 𝐼 goes to the oscillator. So, let us call this as 𝐶𝑝. So, what happens is your loop 

gain transfer function now, let us say this is you are having whatever current gain you have, 

that you are adding here. 

So, you will see a change in the loop gain. I am going to have, 

𝐿𝐺 =
1

2𝜋
[𝐼𝐵𝑊 + 𝐾𝑇𝐷𝐶 .

𝐾𝐼

1 − 𝑧−1
𝐾𝐼𝐷𝐴𝐶] × (𝑟𝑉𝐶𝑂||

1

𝑠𝐶𝑝
)

𝐾𝑉𝐶𝑂

𝑠
.

1

𝑁
 

So, from here to here, what we have is the signal transfer function or STF remains same. So, 

this gain from the input of the delta sigma to the output of the delta sigma for the actual signal 

is the same. So, that gain is 1 and then you have 𝐾𝐼𝐷𝐴𝐶  whatever gain we would like to 

implement, that is what you have. All this current, it does not directly flow through the 

oscillator. It sees this capacitor also. 

So, the modeling requires that we take this 𝐼 whatever the current goes to the oscillator and 

then we find out what is the output frequency. So, here we come up with this logic that in steady 

state when you have all the currents fixed, there is only the noise and the variations you have, 



I can model the VCO using its equivalent resistance and this particular current goes through 

this 𝑟𝑉𝐶𝑂𝐶𝑝, that is the pole. 

So, you can see this current goes through this oscillator and the capacitor which is 𝑟𝑉𝐶𝑂||
1

𝑠𝐶𝑝
 to 

give you the control voltage whatever you have, 𝑉𝐷𝐷𝑜𝑠𝑐, and then from that voltage to output 

frequency, we know it is 
𝐾𝑉𝐶𝑂

𝑠
, this is 

1

𝑁
. So, to simplify it further, we have, 

𝐿𝐺 =
1

2𝜋
[𝐼𝐵𝑊 +

𝐾𝐼
′𝑓𝑟𝑒𝑓

𝑠
]

𝑟𝑉𝐶𝑂

1 + 𝑠𝑟𝑉𝐶𝑂𝐶𝑝

𝐾𝑉𝐶𝑂

𝑠𝑁
 

So, now, you see we started with a digital PLL which was only second order. Because of this 

capacitor and the kind of control which we have, it becomes third order and you have a third 

order system, 3 poles and the pole is mostly dominated by 𝐶𝑝. So, now, I will bring back that 

we added the ripple capacitor earlier, ripple bypass capacitor in our regular analog charge-

pump PLL. In this case, we did not add an extra bypass capacitor. 

But the parasitic capacitor which is existing at the VDD of the oscillator, it provides you the 

third pole and it will help in reducing the ripple because of this proportional path or because of 

whatever residual ∆𝐼 you are going to have from IDAC, it is going to have the ripple there and 

it will help in having the ripple bypass. 

Now, whether we want to go ahead with whatever the ripple bypass capacitor gives us or if we 

want to change this particular pole position, we can go ahead and add extra capacitor also. 

Now, this is the 3 pole, 1 zero system and you have to just keep it stable. So, you can go with 

the same process which we used initially that we want to have the maximally flat phase 

response at the unity gain frequency, we would like to have the positions of poles and zeros. 

So, with that method, you can find the location of 𝐶𝑝 or the value of 𝐶𝑝, the gain 𝐾𝐼
′ and other 

values. So, this is a very basic hybrid analog and digital PLL with all the given controls. One 

other thing which we need to know here is that when you are doing the quantization from 𝐷𝐼 

to 𝐷𝐷𝑆𝑀, a lot depends on this frequency, clocking frequency. 

If this clock frequency is higher, then your noise will be filtered off more, the quantization 

noise will be filtered more and just to tell you that to differentiate between this conversion from 

directly dropping 6 bits or doing through delta sigma, the difference is this that the quantization 

noise in directly dropping 6 bits, that quantization noise spectral density will be flat. This is 



quantization noise while dropping bits with respect to 𝜔. This is a noise spectral density, it is 

going to be flat whereas when you are doing the quantization using digital delta sigma, it is 

going to be something kind of this, it is called noise-shaped. 

So, within a certain bandwidth, within a certain band, if that happens to be the bandwidth of 

the PLL, the noise is much lesser. So, this is your quantization noise with digital delta sigma. 

So, this kind of noise shaping actually depends on the clock frequency which you are using. 

So, quite often this also happens that you do not clock it at the reference frequency. You may 

take this clock and maybe divide by some factor 𝑁1 or some value and use this clock to shape 

this noise better or something like this. 

Those are the details which one can look into when one is designing the digital delta sigma 

modulator. If you are not using digital delta sigma, you can very well go ahead with this. But 

then you have this quantization noise, you have to have a lower bandwidth in the system. Thank 

you. 

 


