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Hello, welcome to this session. So, in the previous session, we looked at the simple design of time-

to-digital converter and understood how we can convert the phase error into its digital equivalent. 
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Now, we will look at what is this digital loop filter, how we are going to implement it and what is 

the transfer function for that. So, as we saw earlier, the digital loop filter is fed by your 

𝐷𝑇𝐷𝐶  coming from the TDC. So, this can be n bit depending on how you design it. Then you have 

the gain 𝐾𝑃, gain 𝐾𝐼. So, you have an accumulator. This accumulator is in general clocked at your 

reference. You are using a digital accumulator, so it is going to change at every reference clock 

period and then you have this as feedback. 

When I implement this as 𝑧−1, it is actually having a delay of one clock period. So, you get this 

and then these two things are again added up with an accumulator like this. So, this is another 

reference clock. Wherever I use 𝑧−1, it is actually clocked at reference. This is 𝐷𝑃, I can call this 

digital word coming from the proportional path, this is the digital word coming from the integral 

part and this is the digital control word coming out of the loop filter 𝐷𝐹. 



So, here if you try to write the small signal block diagram or you want to first write that how 

multiplication is happening. So, 𝐷𝑇𝐷𝐶 output you get at reference clock period. At every 𝑇𝑅𝐸𝐹, you 

may see a change in the 𝐷𝑇𝐷𝐶. So, we have, 

𝐷𝑃[𝑛𝑇] = 𝐾𝑃. 𝐷𝑇𝐷𝐶[𝑛𝑇] 

Similarly, we get, 

𝐷𝐼[𝑛𝑇] = 𝐷𝐼[(𝑛 − 1)𝑇] + 𝐾𝐼𝐷𝑇𝐷𝐶[𝑛𝑇] 

Then, we have, 

𝐷𝐹[𝑛𝑇] = 𝐷𝑃[𝑛𝑇] + 𝐷𝐼[𝑛𝑇] 

I will remove 𝑇 from all this, writing 𝑛𝑇 every time is a problem. It is not a problem for technical 

reasons. It is just that there is no point in writing it again and again when we know that behind 

what is happening is at every reference clock period. 

Now, there are a few things if you think about it that this is an accumulator. It is a digital block. 

These digital blocks work at the rising edge. Whenever you have a rising edge on the clock, what 

will happen is whatever the previous value you have, so, when you get a clock, whatever the value 

you see here, this value is going to be added with the 𝐾𝐼 times whatever the present value is and 

the output will change. 

Normally, it takes some time to compute and get a certain output. So, there is some delay involved 

from reference clock to the output value. So, sometimes it may be done that you do not wait like 

here you will say when you have a reference clock period here and you get a reference clock here. 

So, you are seeing the rising edge on both of them, what we can say is we can combine even these 

two functions and say that you get the accumulated value at the same rising edge. 

So, the idea is that when you get a rising edge on reference, from this rising edge to 𝐷𝐼, there is a 

certain delay involved. And because 𝐷𝐼 changes after the reference edge, so, whatever you are 

getting at this reference edge, whether you are going to process that previous 𝐷𝐼 or you are going 

to process the current 𝐷𝐼, it depends on the implementation. 

In this case, the way I have written is that the current value or at the rising edge of 𝑛 times 𝑇 clock, 

whatever the previous value of the integrator value you have. So, if this is this, whatever value you 



have at the rising edge, you will get the previous value here and this previous value is added with 

respect to the current value. So, given these transfer functions, what we can say here is that, 

𝐷𝑃(𝑧) = 𝐾𝑃𝐷𝑇𝐷𝐶(𝑧) 

Now we have changed into z-domain transfer function. Similarly, we have, 

𝐷𝐼(𝑧) =
𝐾𝐼

1 − 𝑧−1
𝐷𝑇𝐷𝐶(𝑧) 

𝐷𝐹(𝑧) = (𝐾𝑃 +
𝐾𝐼

1 − 𝑧−1
) 𝐷𝑇𝐷𝐶(𝑧) 

So, this is the transfer function in z-domain. If you implement this loop filter in some other manner 

where you have delays involved at any given point, you can take those delays into account. 

Now, as you see that this particular value is a n bit number and you are adding n bit number with 

𝐷𝑃 and it keeps on getting accumulated. So, the final value which you may, the 𝐷𝐹 which you are 

getting, this particular 𝐷𝐹, it can be m bit number, some other value, it is m bit number. So, you 

see that the digital bits which you are getting, these digital bits accumulate and it gives you m bit. 

It is the same way you got the phase error, phase error got converted and then you integrate using 

the charge-pump. The same way you got the phase error representation in 𝐷𝑇𝐷𝐶, 𝐷𝑇𝐷𝐶 gets 

accumulated here and you get the equivalent value and this is going to be m bit here. 

Now, this m bit number, whatever you get, this m bit number has to control your oscillator, voltage 

controlled oscillator. So, what we have now is using the loop filter output, we need to control, so, 

𝐷𝐹 has to control your oscillator and oscillator works with a control voltage. So, this 𝐷𝐹 now has 

to convert to control voltage, digital-to-analog converter. So, whatever digital word you have, you 

will convert that digital word to the voltage. So, here if I am getting m bit from here, these m bits 

have to convert to the respective control voltage. So, there will be gain involved that what does 

LSB mean here. 
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So, let me just try to show you one particular example of this m bit digital-to-analog converter. So, 

let us say these m bits are converted to control voltage using current sources. So, I am using current 

source like this and all these current sources are because this is just a simple implementation, you 

can do it in many different ways and all these current sources, they go to a resistor R. This current 

source I am because this is a m-bit number. 

So, I will use let us say the current 𝐼0, 2𝐼0, 22𝐼0 and similarly I can have, if this is m-bit number I 

can ideally have 2𝑚−1𝐼0. So, you see the 20 going to 2𝑚−1 for m-bit DAC. And all these switches, 

this particular thing you can say is controlled by 𝐷𝐹[0]. 𝐷𝐹[0] here means the 0th bit of the digital 

control word. This is not like at tth instant of time, these are just the bits. So, 𝐷𝐹[1] and so on and 

this is controlled by 𝐷𝐹[𝑚 − 1]. 

So, what I am doing here is for m-bit 𝐷𝐹, I am just writing as, so if m-bit 𝐷𝐹, you know each bit 

which you have, that will have a place value of 20, 21, 22 and so on to 2𝑚−1. So, when I say 𝐷𝐹[0], 

𝐷𝐹[0] means the bit at 20, that place value. Similarly, 22 means 𝐷𝐹[2]. That is how I am 

controlling. You can have any nomenclature you prefer. 

So, here 𝑉𝑐𝑡𝑟𝑙 which you are looking at, this particular 𝑉𝑐𝑡𝑟𝑙 value, one thing is that this 𝑉𝑐𝑡𝑟𝑙 value 

is going to change only when your digital control word is going to change from the loop filter and 

that happens at every reference clock period. So, I can write, 



𝑉𝑐𝑡𝑟𝑙(𝑛𝑇) = {𝐷𝐹[0]. 𝐼0 + 𝐷𝐹[1]. 21. 𝐼0 + ⋯ + 𝐷𝐹[𝑚 − 1]. 2𝑚−1. 𝐼0}𝑅 

𝑉𝑐𝑡𝑟𝑙(𝑛𝑇) = 𝐼0𝑅[𝐷𝐹[0] + 21. 𝐷𝐹[1] + ⋯ + 2𝑚−1. 𝐷𝐹[𝑚 − 1]] 

So, this is your control voltage at the given time instant. 
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So, this can be written as, by the way if you look at it, this is nothing but the decimal equivalent 

of your digital loop filter output. So, whatever your digital loop filter output you have, so, your 

voltage which you are seeing here, your voltage is changing with ∆𝑉𝑐𝑡𝑟𝑙 = 𝐼0𝑅. So, the control 

voltage is actually changing in steps of 𝐼0𝑅, whatever you are using. 



So, now the thing is that your digital control word, it is whatever value you get, it can change the 

control when you are converting from digital to analog, depending on what resolution you choose 

or what 𝐼0 and 𝑅 values you are choosing. These 𝐼0 and 𝑅 values will decide the step of the change 

in the control voltage of the oscillator. So, it changes only in this step. 

So, with respect to your digital loop filter and your 𝑉𝑐𝑡𝑟𝑙, I can very well keep a gain here and say 

I can model this particular part with a gain block, DAC with a gain block, whatever digital word 

you are getting. But when we are doing the analysis, you can say that it is finally converted into 

its decimal equivalent, from binary to decimal equivalent and that decimal equivalent value is then 

multiplied by 𝐼0𝑅 to give you the voltage. So, this is normally written as, by the way, it is written 

as 𝐼0𝑅 V/LSB, this gives you the control voltage here, this is your 𝐷𝐹.   

If you make 2 LSB change here, your output voltage will change by 2𝐼0𝑅. So, the gain of the DAC 

is 𝐼0𝑅 V/LSB. When I write the LSB at the bottom, it appeared like 𝐷𝐹 may go into the denominator 

but these are actually the units. So, this is 𝐷𝐹. So, this is how you are going to change your control 

voltage and once you change your control voltage, from the control voltage to the oscillator, you 

very well know what the transfer function you are going to get.  

One more thing here that if you want to change your frequency, well, if you want to change your 

frequency by a small amount, if you want to change the gain, you need to choose a smaller 𝐼0 or a 

smaller 𝑅, but often that is not the possibility in your design because you need to cover a certain 

range of the VCO frequency also. 

So, whatever ∆𝐹 output you want with respect to ∆𝑉𝑐𝑡𝑟𝑙, based on ∆𝑉𝑐𝑡𝑟𝑙 and the maximum digital 

word which you have a limit, you are going to decide your 𝐼0𝑅. It is not possible to choose any 𝐼0 

or any 𝑅. It is constrained by your accumulator output, your frequency range which you want, 

what kind of step in the frequency tuning you want.   

One more thing here is that we have seen all this digital accumulator and so on. One easy thing 

about the digital part is that whenever we want to increase or decrease the gain of the blocks, 

increasing or decreasing the gain of the blocks can be easily done by dropping the bits or by adding 

a bit or by shifting the bits. So, just as an example, I will show you that if I am getting my digital 

loop filter, whatever digital loop filter I have, I am getting m bits here.   



Now, in these m bits, what I do is I drop q LSBs. So, it is normally shown by a sign like this, drop 

q LSBs and just take p MSBs. So, for example, what I am going to do is just I will show you one 

example that I have let us say 4 bits to begin with, I drop 1 bit and I take 3 bits. This, in your 

analysis term, is equivalent to saying that the DLF output is actually multiplied by gain 
1

2
.   

Because you drop the last bit, so when you drop the last bit, you actually divide by 
1

2
. So, it is like 

just think about it, if the number which I have here is 10. So, this is the digital bit, I dropped LSB 

which means this particular bit I dropped. So, this bit is dropped. When this bit is dropped, what 

you get here is 101. What is 101? Decimal equivalent 5, what was the decimal equivalent here? 

10. If the number would have been 11, 11 will also become 5 after division by 2 here and 10 will 

also become 5 after division by 2 but for all practical purposes, we can say that we have divided 

the number by 
1

2
. The error is ±

1

2
 LSB in any case. 

So, this kind of division or this kind of dropping of the bits to implement the division is quite 

common and it is more common in the case of your 𝑉𝑐𝑡𝑟𝑙. So, the reason is when you actually do 

the accumulator, you want to have good phase error, you want to have a larger integrated value 

range, integrated output. Quite often it is not possible to implement the DAC which you are having, 

see having 2𝑚−1 bits, if m is 10, having a 10 bit DAC is not that easy, let me put it that way. 

So, these m bits which you are getting from 𝐷𝐹, you often do a division. You take only p bits. If 

you do this, you will implement a gain of 

1

2

𝑞
. So, this often happens. Now, given all these things, 

let us look at the small signal model of the digital PLL now. We have seen the gain of each block 

of the digital PLL, so, beginning with TDC, you have phase reference, you have feedback, the 

output goes to TDC with a gain 𝐾𝑇𝐷𝐶. I am not adding the quantization error here right now. This 

goes to loop filter whose transfer function is 𝐾𝑃 +
𝐾𝐼

1−𝑧−1, the output of that, this is 𝐷𝑇𝐷𝐶. 

The output of that is 𝐷𝐹 and this 𝐷𝐹 goes to DAC whose gain happens to be you can say 𝐾𝐷𝐴𝐶 

V/LSB. 𝐾𝐷𝐴𝐶 is like the voltage gain per LSB, this is the gain. Then this becomes your control 

voltage, it goes to VCO whose gain is 
𝐾𝑉𝐶𝑂

𝑠
 and the output is fed back, this is what you have. This 

is your 𝜑𝑂𝑈𝑇 at the final value. So, one thing you can first make sure are the units. So, you get 𝜑𝐸𝑅 



here, 𝐾𝑇𝐷𝐶 has units of LSB per phase error, it is just the digital word in both input and output for 

the loop filter, you get the control voltage, you get 𝐾𝑉𝐶𝑂. 

So, now these things, this block together is often written not as a VCO but as a DCO. DCO stands 

for Digitally Controlled Oscillator. So, what you can say is that the combined 𝐾𝐷𝐶𝑂 or the digital 

block gain is from 𝐷𝐹 to output. So, the gain from 𝐷𝐹 to 𝜑𝑂𝑈𝑇, if I write this gain from 𝐷𝐹 to 𝜑𝑂𝑈𝑇, 

this is 𝐷𝐹, this is 𝜑𝑂𝑈𝑇, it is 
𝐾𝐷𝐴𝐶.𝐾𝑉𝐶𝑂

𝑠
. So, this is written as in general as 

𝐾𝐷𝐶𝑂

𝑠
 where 𝐾𝐷𝐶𝑂 has 

units of rad/s/LSB.   

So, that is the gain 𝐾𝐷𝐶𝑂. Whether you use as a 𝐾𝐷𝐶𝑂 or you use as 𝐾𝑉𝐶𝑂, it is one and the same 

thing till the time your total loop gain remains same. Now, this is the digital loop. So, we have to 

analyze this loop gain, what is the unity gain frequency and so on. So, the loop gain of the digital 

loop is, I need to just find the gain as I go around the loop, it is given by, 

𝐿𝐺 = 𝐾𝑇𝐷𝐶 [𝐾𝑃 +
𝐾𝐼

1 − 𝑧−1
]

𝐾𝐷𝐶𝑂

𝑠
×

1

𝑁
 

Now, this is interesting here that a part of the transfer function is in z-domain and a part of the 

transfer function we are using is still in s-domain. 

So, it will be better either we convert the whole of it in z-domain or the whole of this transfer 

function in s-domain. So, we will convert this complete transfer function in s-domain and we are 

going to do that using this analysis that 𝑧 = 𝑒𝑠𝑇 , where 𝑇 is your reference period. So, what you 

can do here is if I go ahead and write it that way. So, we get, 

𝐿𝐺 = 𝐾𝑇𝐷𝐶 [𝐾𝑃 +
𝐾𝐼

1 − 𝑒
−𝑠

𝑓𝑟𝑒𝑓

]
𝐾𝐷𝐶𝑂

𝑠𝑁
 

So, either you write like this or you write 
𝑠

𝑓𝑟𝑒𝑓
, both the things are possible.   
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So, what I have is, 

𝑧 = 𝑒𝑠𝑇 = 𝑒
𝑠

𝑓𝑟𝑒𝑓 ≈ 1 +
𝑠

𝑓𝑟𝑒𝑓
 

So, you do this, what you get here is, 

𝑧−1 = 𝑒−𝑠𝑇 = 𝑒
−𝑠

𝑓𝑟𝑒𝑓 ≈ 1 −
𝑠

𝑓𝑟𝑒𝑓
 

𝐿𝐺 = 𝐾𝑇𝐷𝐶 [𝐾𝑃 +
𝐾𝐼𝑓𝑟𝑒𝑓

𝑠
]

𝐾𝐷𝐶𝑂

𝑠𝑁
 

𝐿𝐺 =
𝐾𝑇𝐷𝐶𝐾𝐷𝐶𝑂𝐾𝑃

𝑠2𝑁
[𝑠 +

𝐾𝐼𝑓𝑟𝑒𝑓

𝐾𝑃
] 

It is like you have two poles and one zero which we know is a stable system. 

So, here I will just plot this loop gain and the angle. So, you have 𝑠2, so it comes by -40 dB/dec. 

At this zero location, which is actually 𝜔𝑧, zero is at −
𝐾𝐼𝑓𝑟𝑒𝑓

𝐾𝑃
 and 𝜔𝑧 =

𝐾𝐼𝑓𝑟𝑒𝑓

𝐾𝑃
. This is your 𝜔𝑢, 

magnitude of loop gain with respect to 𝜔. And the angle of the loop gain is, it starts from -180°, it 

goes to -45°, so it is -45°, -90°, -135°, -180°. So, it starts from -180°, it goes to -135° at 𝜔𝑧 and 

after some time, it may reach -90°. It never goes above -90° and it does not come down also. 

 



So, this is the phase margin of the PLL. So, here just to summarize it, we can say this digital PLL 

has two poles, poles at 𝑠1 = 0 and 𝑠2 = 0. Zeroes at 𝑠1 = −
𝐾𝐼𝑓𝑟𝑒𝑓

𝐾𝑃
, this is what we have. Now, 

given this, zeroes and poles and the phase margin close to 90° quite often and if not 90°, you can 

always, your system is always going to be stable anyways because it is two poles and one zero. 

So, you may have, well, you can say I have, depending on the loop gain, I can have something like 

this where you will have a lower phase margin but stability is there. 

Now, the unity gain frequency, so, to find the unity gain frequency, you need to just say that, 

|𝐿𝐺(𝑗𝜔𝑢)| ≈ 1 

So, we get, 

𝐾𝑇𝐷𝐶𝐾𝐷𝐶𝑂𝐾𝑃

𝜔𝑢
2𝑁

|𝑗𝜔𝑢 +
𝐾𝐼𝑓𝑟𝑒𝑓

𝐾𝑃
| ≈ 1 

𝐾𝑇𝐷𝐶𝐾𝐷𝐶𝑂𝐾𝑃

𝜔𝑢
2𝑁

. 𝜔𝑢 ≈ 1 

This is because 𝜔𝑧 ≪ 𝜔𝑢, that is an assumption here. 

So, we get, 

𝜔𝑢 ≈
𝐾𝑇𝐷𝐶𝐾𝐷𝐶𝑂𝐾𝑃

𝑁
 

So, the unity gain frequency is equal to the gain in the proportional path, 𝐾𝑇𝐷𝐶𝐾𝐷𝐶𝑂𝐾𝑃, they are 

all the gain of the blocks in the proportional path, so that is what we get. This analysis is surely 

valid under the assumption that for the frequencies which I am considering, 
𝑠

𝑓𝑟𝑒𝑓
≪ 1. 

And this much less than is quite often actually this value has 
𝑠

𝑓𝑟𝑒𝑓
 ≪

1

10
. So, this is under this 

assumption. If this assumption is not valid, I cannot approximate this. So, this is an approximation. 

If the frequencies at which you are considering or the frequencies become quite close to your 

reference frequency, then you cannot approximate, you have to go with a more accurate analysis. 

Thank you. 


