
Phase-Locked Loops

Dr. Saurabh Saxena

Department of Electrical Engineering

Indian Institute of Technology Madras

Lecture ‒ 59

Introduction to Digital PLL

(Refer Slide Time: 0:16)

Hello, welcome to this session. In this session, we will start looking at the drawbacks of analog

charge-pump PLL and as a solution to the problems in the analog charge-pump PLL, we will

introduce digital PLL and look at how we design digital PLLs. So, the analog charge-pump

PLL which we are so used to now is something like this. You have PFD, charge-pump followed

by loop filter. For easier analysis, we will use only Type-II loop filter here and this is VCO,

divider and feedback like this and you have your reference here and this is your output.

So, the problems with the analog charge-pump PLL are as follows. Here when you design a

PLL in a given process technology, let us say 180 nm and when you would like to port, when

let us say same frequency is needed in 65 nm technology, this kind of PLL is difficult to port

from one technology to the other technology. So, let us look at the blocks which you can port.

So, the output frequency is the same but what happens is your technology changes. So, when

your technology changes, your PFD which consists of NAND gates and other combinational

logic, that is easy to port.

Your charge-pump consists of your current sources. Now, this charge-pump, I will just show

you the example. So, what happens is when you have a charge-pump in a given process which

is like a switched current source and when you change this from 180 nm process, this is not

180 Volts, so let me just write it, this 180 nm to, when you port this charge-pump to 65 nm for

example, then here what happens is your minimum length which you are using here as 180 nm,

this particular length actually changes and can be 65 nm. You can still retain at 180 nm, there

is no problem in retaining 180 nm but the benefit of going to a lower process is the smaller area

for the same block. So, this problem will come.

So, when you change it to 65 nm, the charge-pump relies on the fact that the top current source

and the bottom current source, they are exactly matched and it is a known fact that as you go

down the channel length or as the channel length reduces, the matching which you will find

between these devices, the up and bottom current sources, that will become more and more

difficult if you are just reducing the length. This is like the short-channel effects.

So, the idea is that the charge-pump operation relies on the output current or an analog value

and as you scale down the process, what you will find is it is difficult to maintain the matching

between the top and bottom current sources for the reduced channel length. And if I say even

in the reduced technology or process node, if I am using the same length, then what is the point

of scaling the charge-pump down to the lower process? That is something which you can

always give as a counter-intuitive but a counter to this.

Now, the thing is that this charge-pump has the issue. The other thing is the VCO, if you have

an oscillator ring VCO which is operating at 1.2 GHz in case of your 180 nm and you want to

implement the same oscillator in your 65 nm process, the oscillator will also scale. But in both

the cases, for the oscillator and the charge-pump, the supply voltage reduces the voltage

headroom available for current sources in these blocks.

Now, for oscillators it is not a problem because the device length reduces, so the maximum

frequency typically increases. So, achieving the same frequency is not a problem in the lower

process. But the problem is with the charge-pump and the problem is one thing is you say I am

not getting the matching and if you are not getting the matching with a single transistor, you

would like to increase the output impedance looking in by having a cascode. You cannot have

a cascode because your supply voltage is limited, so the charge-pump faces a real issue. So,

this is the problem with the analog charge-pump based PLL as you port the process.

The other problem is that this capacitor which you have, this capacitor occupies a lot of area

for a good output jitter. So, the capacitor area is I will say it is a problem. Why is it a problem?

Because as you go down to a lower process, we all know that lower technology nodes, they are

much costlier and you are implementing the same kind of MIM capacitor, metal insulator metal

capacitor whether it is 180 nm or it is 65 nm or maybe 28 nm or something.

So, the capacitor density generally does not increase as you go down to a lower process, the

capacitor area is large, and when the capacitor area is large, actually it is going to cost more as

you go down to a lower process. So, the area of the capacitor remains fixed from 180 nm to 65

nm but at the same time, the cost increases. So, this is not a good idea as such.

Now, this capacitor, the metal insulator metal capacitor, MIM capacitor which we normally

use in a CMOS process, it has a typical density of you can say 2fF/m2. And you think about

it, if you are implementing a 100 pF of capacitor, what problems will you face? The area is

going to be large.

So, just a typical example, I want to implement 100 pF by using this 2fF/m2, so the area is

going to be 50,000 m2. So, 50,000 m2, you can say roughly it is 200-220 micron area. 100

pF is not that much. Many a times you would like to have a much larger capacitor for better

phase noise at the output.

Now, the substitute for this capacitor is using a MOSCAP. So, in place of using MIM capacitor,

metal insulator metal capacitor, someone can say if the density is a problem, I am going to use

a MOSCAP which also scales down with the process. This particular MOSCAP has a real

problem that this MOSCAP comes with a current leakage and what is this 𝐼𝑙𝑒𝑎𝑘𝑎𝑔𝑒? This is the

gate current leakage. So, I am just modeling the MOSFET used as a capacitor with a leakage

current, this is your loop filter which you have.

Now, if you have this current leakage, well, what is the problem? Well, the problem is if I say

that I have a constant gate leakage current here 𝐼𝑙, writing leakage is too much. So, I will write

this 𝐼𝑙. So, now you know that during your UP and DN pulses in the charge-pump, this 𝐼𝑙 is

present everywhere. So, if this 𝐼𝑙 is present everywhere, you can think about it that this control

voltage will always keep on reducing.

So, if I think that I am going to have these overlap pulses as overlap between UP and DN such

that it locks to a zero phase offset, ideally this should happen, but what happens is this 𝐼𝑙 current

comes in and your 𝑉𝑐 keeps on dropping. If 𝑉𝑐 keeps on changing, 𝑉𝑐𝑡𝑟𝑙 also keeps on changing.

So, I am just showing you that there is a constant current 𝐼𝑙 which is present all the time. It may

be very less but the thing is as your capacitor area increases or the capacitor is large, your

leakage current is also large. So, this is 𝐼𝑙 current, it is always there.

So, your 𝑉𝑐𝑡𝑟𝑙 voltage will always keep on decreasing or increasing, that depends on the leakage

current, it is positive or negative. So, just an example, I am plotting that your voltage always

keeps on decreasing and if this thing happens, then you know that it is not possible for the PLL

to be locked in this state where your control voltage is always varying. So, this will not happen

and if this does not happen, what will happen is that you will have a phase offset in a real case.

So, if I am going to have a phase offset, my UP and DN pulses will be like this and you are

going to compensate your gate leakage current with phase offset here.

What will happen then? Just a change here, during this time you will increase this potential

every time and during the other time, you are going to reduce the potential. Your 𝐼𝑙 remains

fixed. The only thing is you get extra current from the charge-pump during the time when UP

is high and DN is low. So, this thing is going to happen and this kind of control voltage 𝑉𝑐 and

similarly your 𝑉𝑐𝑡𝑟𝑙, this kind of control voltage will increase the reference spur value at the

output.

So, using a MOS capacitor in place of a MIM capacitor is surely not an option because that

gives a lot of offset at the input of the PFD which is going to increase the spur value at the

output. So, this is an issue. So, what we can say is, in summary, the analog charge-pump PLLs

are difficult to port from one technology to the other technology for multiple reasons. One,

your charge-pump, the matching between the UP and DN current sources, that matching goes

bad as you go down to a lower technology. The other thing is your capacitor area which you

are having, that particular capacitor area is a lot, it costs more in lower technology nodes.

MOS capacitor is not an option because of the gate leakage current and your charge-pump also

has a problem with the reduced voltage headroom to operate while still maintaining the

matching between the top and bottom current sources. So, this is the problem we have.

(Refer Slide Time: 14:38)

So, we are going to address these problems one by one. The first one, let us look at it, the area

for the capacitor. So, this is a problem which we need to address, the area for the loop filter

capacitor. The other one which we are looking at is the charge-pump issue. We will find that

while solving the problem for the area for the loop filter capacitor, that problem will also get

solved with some additional inputs.

So, here the idea is that this particular block, the charge-pump plus your loop filter capacitor is

implementing at 𝑉𝑐𝑡𝑟𝑙. The transfer function which it is implementing is given by,

𝑉𝑐𝑡𝑟𝑙(𝑠) = 𝐼𝐶𝑃𝑅 +
𝐼𝐶𝑃

𝑠𝐶1

Now, we are going to replace this 𝑠 here with its digital equivalent using bilinear transform,

and what is this bilinear transform by the way? Bilinear transform is given as,

𝑠 =
2

𝑇𝑠

1 − 𝑧−1

1 + 𝑧−1

If I do this, then we get,

𝑉𝑐𝑡𝑟𝑙(𝑧) = 𝐼𝐶𝑃𝑅 +
𝐼𝐶𝑃𝑇𝑠

2𝐶1

1 + 𝑧−1

1 − 𝑧−1

So, ideally speaking what we have done is, we have just converted this analog transfer function

to its digital equivalent. For frequencies much lesser than the sampling rate which I am using

to implement this digital transfer function, for 𝑓 ≪
1

𝑇𝑠
, these two transfer functions will have

the same input-to-output response.

So, now I will just write this in terms of 𝑉𝑐𝑡𝑟𝑙, from Laplace domain I will write in terms of z-

domain. I have the transfer function as,

𝑉𝑐𝑡𝑟𝑙(𝑧) = 𝐼𝐶𝑃𝑅 +
𝐼𝐶𝑃𝑇𝑠

2𝐶1

1 + 𝑧−1

1 − 𝑧−1

This particular transfer function can be implemented using two paths. So, we get,

𝑉𝑐𝑡𝑟𝑙(𝑧) = 𝑉𝑐𝑡𝑟𝑙,𝑃(𝑧) + 𝑉𝑐𝑡𝑟𝑙,𝐼(𝑧)

So, ideally speaking, this 𝑉𝑐𝑡𝑟𝑙,𝑃(𝑧), if you think about it, what is this transfer function doing,

𝑉𝑐𝑡𝑟𝑙(𝑠)? This is 𝐼𝐶𝑃 times 𝑅, so whatever your phase error you have at the output of the PFD,

whatever your PFD output is, that PFD output, the phase error, PFD detects the phase error and

your PFD output is getting multiplied.

So, this transfer function 𝑉𝑐𝑡𝑟𝑙(𝑠) can be written as, let me just come to the block because this

is a standalone value where I am just considering this loop. What I am doing here is, I am

saying this is 𝐼𝐶𝑃 and this is 𝑉𝑐𝑡𝑟𝑙. So, this particular analog transfer function is now represented

by a digital transfer function where your 𝐼𝐶𝑃 is the input and your 𝑉𝑐𝑡𝑟𝑙(𝑧) is the output. That

is what you see here.

Now, to simplify this a little further, I know that this charge-pump which I am having is

controlled by, this is 𝐼𝐶𝑃, this is controlled by phase your PFD output whose gain, so this PFD

output, you have a phase error at the input of the PFD, you get UP and DN pulses. So, from

PFD block to your charge-pump block. So, you have a phase error at the input and this is like

the voltage which you have.

So, you have 𝑉𝑃𝐷. So, from your 𝑉𝑃𝐷 to your charge-pump output, the gain which we are using

is 𝐼𝐶𝑃. So, what I am trying to do here is the following. These two are standalone blocks. So,

now I will write,

𝑉𝑐𝑡𝑟𝑙(𝑧) = 𝐼𝐶𝑃𝑉𝑃𝐷𝑅 +
𝐼𝐶𝑃𝑉𝑃𝐷𝑇𝑠

2𝐶1

1 + 𝑧−1

1 − 𝑧−1

I am writing everything in terms of z-domain. So, we get,

𝑉𝑐𝑡𝑟𝑙(𝑧)

𝑉𝑃𝐷(𝑧)
= 𝐼𝐶𝑃𝑅 +

𝐼𝐶𝑃𝑇𝑠

2𝐶1

1 + 𝑧−1

1 − 𝑧−1

So, this is the transfer function which you can say I am implementing from our PD output to

our control voltage. So, the previous expression which we wrote here, this one, this one for a

standalone, this circuit.

Now, when we bring our PFD and charge-pump together, this is what you get. Now, come back

to this and look at it that from PFD output, somehow, we do not know how, but somehow, we

are converting this phase detector or the PFD, right now that is a voltage, but somehow we are

saying that we are implementing this transfer function to 𝑉𝑐𝑡𝑟𝑙 which is controlling our VCO.

So, whether this function can do it or not, that is something which still needs to be checked.

So, let us now just take this function as such as,

𝑌(𝑧)

𝑋(𝑧)
= 𝐼𝐶𝑃𝑅 +

𝐼𝐶𝑃𝑇𝑠

2𝐶1

1 + 𝑧−1

1 − 𝑧−1

I am going to divide this transfer function in two parts. So, we get,

𝑌(𝑧)

𝑋(𝑧)
= 𝐻𝑝𝑟𝑜𝑝(𝑧) + 𝐻𝑖𝑛𝑡(𝑧)

Why the integral part? Because there is 1 − 𝑧−1 which acts like an integrator.

So, if you look at 𝐻𝑝𝑟𝑜𝑝(𝑧). It is telling
𝑌(𝑧)

𝑋(𝑧)
. So, 𝐻𝑝𝑟𝑜𝑝 is given by,

𝐻𝑝𝑟𝑜𝑝(𝑧) =
𝑌𝑝𝑟𝑜𝑝(𝑧)

𝑋(𝑧)
= 𝐼𝐶𝑃𝑅 = 𝐾𝑃

Similarly, 𝐻𝑖𝑛𝑡(𝑧) is given by,

𝐻𝑖𝑛𝑡(𝑧) =
𝑌𝑖𝑛𝑡(𝑧)

𝑋(𝑧)
=

𝐼𝐶𝑃𝑇𝑠

2𝐶1

1 + 𝑧−1

1 − 𝑧−1
=

𝐾𝐼(1 + 𝑧−1)

1 − 𝑧−1

So, this is the transfer function which you have.

Now, these two things, it is worth as looking here as 𝑧 which is like discrete in nature. The

block diagram for this can be that I give 𝑋(𝑧) and from 𝑋(𝑧), I have a proportional path with

𝐾𝑃, it gets added up, I will use an adder here right now, and then this particular transfer function

which you are seeing here
𝐾𝐼(1+𝑧−1)

1−𝑧−1 .

For simplicity, let us ignore this part. If you want, we can also implement this. Just ignoring

the numerator, that is the zero frequency which you have, what we are doing here is we are

having a 𝐾𝐼 and then on the top of the 𝐾𝐼, we are integrating, this is just a block diagram, by

𝑧−1 here like this and it gets added up here. So, this is your 𝑌(𝑧) based on 𝑋(𝑧).

Now, just look at it. This is 𝑌𝑝𝑟𝑜𝑝 and this is 𝑌𝑖𝑛𝑡. So, what is 𝑌𝑖𝑛𝑡? 𝑌𝑖𝑛𝑡(𝑧) is given by,

𝑌𝑖𝑛𝑡(𝑧) = 𝐾𝐼𝑋(𝑧) + 𝑧−1𝑌(𝑧)

𝑌𝑖𝑛𝑡(𝑧)

𝑋(𝑧)
=

𝐾𝐼

1 − 𝑧−1

So, I told you, yes, we are ignoring this part. This is just a zero which we have. Later we will

find that it can be neglected while you are implementing it and many other things will come

which will add to this stuff.

(Refer Slide Time: 26:55)

So, the transfer function which you see here now, this is 𝐾𝑃 and 𝐾𝐼. So, let us just look at it.

The overall transfer function is given as,

𝑌(𝑧)

𝑋(𝑧)
= 𝐾𝑃 +

𝐾𝐼(1 + 𝑧−1)

1 − 𝑧−1

𝑌(𝑧)

𝑋(𝑧)
=

𝐾𝑃 + 𝐾𝐼 + (𝐾𝐼 − 𝐾𝑃)𝑧−1

1 − 𝑧−1

So, you have a zero and you have a pole. The pole as per the 𝑧 transfer function is at 𝑧 = 1 and

𝑧 = 1 here is like, by the way 𝑧 is replaced by 𝑒𝑠𝑇𝑠. So, 𝑧 = 1 is what we are saying is at 𝑠 =

0. So, that is what we have.

Now, given this transfer function, what the exact value we are going to choose for 𝐾𝑃 and 𝐾𝐼,

that is still something to look at and we will see that but before that, the question is how you

are going to implement this and this is a digital block which 𝑧−1 is like a delay in the value.

So, this block is going to be implemented using digital accumulators. So, I will just bring this

first and then replace each of these blocks with their corresponding digital counterparts.

So, here just paste this. I think putting it here is a better option. So, first this accumulator which

you are seeing, what you will see here is that this goes to an accumulator which is normally

represented by this block 𝐾𝐼 and then you have this 𝑧−1. Similarly, this one you can have a

similar block here, it goes here and this goes here. So, this is your 𝑌(𝑧). This is 𝑌𝑝𝑟𝑜𝑝, this is

𝑌𝑖𝑛𝑡. These A1 and A2, A1 and A2 are digital accumulators.

Now, if they are digital accumulators, depending on what speed you are clocking them. So,

normally all these accumulators are clocked at a certain frequency and in this case, this is your

sampling clock period. So, 𝑓𝑠 normally here is equal to your reference frequency. These are all

digital accumulators.

Now, think about it whether you implement this digital accumulator or the digital loop filter in

180 nm or you are going to implement this in 65 nm, these things will remain the same. There

is no problem in porting from one technology to the other technology. Actually, as you go

down lower to a lower technology node, in that particular case, you will find that in

implementing this, you will actually save a greater amount of power.

So, now the thing is that these particular digital accumulators, they will operate at a clock, that

is one thing. The other thing is now they need, you are having a digital accumulator. So, they

need bits at the input and their output is also going to be in bits, 1 0. You are implementing an

accumulator and your digital filter, this is like a digital loop filter, you will have to feed in the

bits and get the bits out.

What was PFD giving earlier? PFD was giving us analog, the phase error. So, if you have any

phase error at the input, PFD was giving the difference between, the timing difference. Now,

that timing difference has to be converted into bits. So, now, given this loop filter, you are

going to use this particular loop filter which is helping you to replace the loop filter capacitor

in the analog PLL.

So, let me just remove this part now, this is the loop filter which we are adding. So, what I want

to do is that I want to convert the phase error from PFD in bits form. So, I still have the reference

clock and voltage, they remain the same. So, I need a block which converts the timing

information between your reference and your divided clock to digital bits. And that particular

block is called TDC. It gives you the information about the phase error in bits.

Similarly, the output of the loop filter is digital. This dash just tells you that there are a number

of bits. How many? That we still do not know. But this is like n bit or m bit you can have,

depending on how many bits information you have and this has to be converted to the oscillator.

So, I have an oscillator here which normally works on voltage, you need this 𝑉𝑐𝑡𝑟𝑙 voltage to

change the oscillator frequency. So, I have to convert these bits to 𝑉𝑐𝑡𝑟𝑙 and if I have to convert

these bits to 𝑉𝑐𝑡𝑟𝑙, what I need is a DAC, digital-to-analog converter. And then you have this

VCO frequency, VCO output. Well, the VCO output remains same. This is ÷ 𝑁. This is your

basic digital PLL.

Here, TDC is Time-to-Digital Converter. It converts the timing error or the phase error which

you have at the input of the PFD earlier, the reference and the feedback divided signal. It

converts that error into digital bits. That is what the TDC does and your DAC converts the

digital output of the loop filter to analog control voltage which is needed for the oscillator. So,

using TDC, DAC and this whole block is normally called Digital Loop Filter, DLF. We need

to see how we can use all these blocks actually to make our PLL work better or the way we

want. Thank you.

