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So, so far, we have seen the design of a charge-pump PLL and we were focused on designing this 

PLL for one single output frequency. Now, as we go ahead and we employ this PLL in a given 

application, it is often required that you may need to change the output frequency for the same 

PLL. So, let us just look at the PLL block diagram which we have been studying in-depth. So, a 

charge-pump PLL, this is what you are looking at. 

We have a PFD followed by charge-pump where you get 𝑈𝑃 and 𝐷𝑁 pulses. And then output of 

the charge-pump goes to a loop filter like this and then you have your capacitors 𝐶1 and 𝐶2 and 

here you have a VCO and then you have a divider in between. So, I will write this as 𝑁 here and 

this is your PLL. So, you have a reference clock and from the VCO, you have output clock. 

Now, in most of the applications, what you will see is that your reference frequency in general 

remains the same because you are going to use a crystal as a reference. So, this is the symbol of 

the crystal I am using, this is crystal and this feeds into your PLL. The crystal can be a piezo-

electric crystal or it can be temperature compensated crystal oscillator (TCXO) or voltage 

compensated. Here you have this 𝑖𝑐𝑝 and 𝑉𝑐𝑡𝑟𝑙. So, in our case, what we have is this crystal which 

gives us the reference signal here, the frequency of the reference is 𝑓𝑅𝐸𝐹 and we know that it is 

given by, 

𝑓𝑅𝐸𝐹 =
𝑓𝑂𝑈𝑇

𝑁
 



What we want is that, 

𝑓𝑂𝑈𝑇 = 𝑀𝑓𝑅𝐸𝐹 

where, 𝑀 is variable. How do we make this 𝑀 variable? That is something which is for us to 

decide. So, in the PLL loop, what you see here is that the feedback loop will always enforce that 

the feedback signal at the input of the PFD and your reference signal, both these signals should 

have the same frequency. So, in order to change the output frequency, we can have two possible 

methods. One, because the feedback loop is going to enforce that, so I can have a divider here let 

us say ÷ 𝑁1 or a divider in the feedback which is ÷ 𝑁2. 

So, now the reference which goes to your PFD is this and this is your feedback signal. So, 𝑓𝑅𝐸𝐹 in 

this new case is equal to your crystal frequency. So, you can say, 

𝑓𝑅𝐸𝐹 =
𝑓𝑋𝑇𝐴𝐿

𝑁1
 

and your feedback frequency is given by, 

𝑓𝑓𝑏 =
𝑓𝑂𝑈𝑇

𝑁2
 

The PLL loop is going to enforce that your reference frequency is equal to your feedback 

frequency. So, we get, 

𝑓𝑂𝑈𝑇 =
𝑁2

𝑁1
𝑓𝑋𝑇𝐴𝐿 

So, if you want to change the output frequency, you can change the output frequency in this 

particular manner. You look one by one. If I have 𝑓𝑂𝑈𝑇, I will keep one of it as fixed, so 𝑁2 is fixed 

for example and 𝑁1 is varying. In that case, the maximum frequency which I can have in my system 

is given by, 

𝑓𝑂𝑈𝑇,𝑚𝑎𝑥 =
𝑁2(𝑓𝑖𝑥𝑒𝑑)

𝑁1(𝑚𝑖𝑛)
𝑓𝑋𝑇𝐴𝐿 



The minimum value of divider is 1, so, you do not divide. Whatever your crystal frequency you 

have, your 𝑁2(𝑓𝑖𝑥𝑒𝑑) times that crystal frequency is something which you will get. Similarly, if 

I want to keep my 𝑁1 as fixed and make my 𝑁2 variable. Then, we have, 

𝑓𝑂𝑈𝑇 =
𝑁2

𝑁1(𝑓𝑖𝑥𝑒𝑑)
𝑓𝑋𝑇𝐴𝐿 

So, in this case, whatever you have your 𝑁2, depending on your 𝑁2, you will get the output 

frequency. 

The problem with having a divider in the crystal path is that 𝑓𝑋𝑇𝐴𝐿 is typically limited. For a good 

phase noise at the crystal output, the crystal frequency is typically limited. And if you want a really 

good high frequency crystal, the size will be large, the power consumption will be more and your 

cost will also be high. So, crystal frequency is typically limited. 

So, dividing the crystal frequency in general is not an option. It is not that technically it is not 

possible. It is very much possible but quite often what we use is we vary only the divider part here. 

We vary the division factor in the feedback path to vary the output frequency. So, if we do that, let 

us say you have both the options but most of the time we use this one only in the feedback. 

So, given this PLL where you are only varying the input frequency and this is your feedback. Now 

I will just use a divider 𝑁 here rather than 𝑁2 to make sure that you have only one divider in the 

PLL. So, what are the problems or the challenges which you have when you want to have a large 

tuning range? So, here for simplicity, I will just remove the 𝐶2 for now. You can add 𝐶2, just to 

avoid any complicated expressions for now. 

So, in this example, let us say, we have, 

𝑓𝑂𝑈𝑇 = 𝑁𝑓𝑅𝐸𝐹 = 𝑁𝑓𝑋𝑇𝐴𝐿 

And I want to have a wide range for this output frequency. So, I will just choose one factor that, 

∆𝑓𝑂𝑈𝑇 = 2∆𝑓 = (2𝑁 − 𝑁)𝑓𝑅𝐸𝐹 

You can say this division factor is varying from 𝑁 to 2𝑁. That is how you want to have. 



So, when your division factor was 𝑁, so let us just write it here. So, when your division factor is 

𝑁, when divider is 𝑁, in that case, 𝑓𝑂𝑈𝑇 = 𝑁𝑓𝑅𝐸𝐹  and you are able to change the divider ratio from 

𝑁 to 2𝑁 in the PLL. So, 𝑓𝑂𝑈𝑇 = 2𝑁𝑓𝑅𝐸𝐹. So, the range which we cover is 2x. 

As an example, just to make it look better, so let us say your 𝑓𝑅𝐸𝐹 = 40 MHz and 𝑁 = 16. In that 

case, 𝑓𝑂𝑈𝑇 = 640 MHz. And I am able to change this value to 32 and the PLL still operates fine. 

This is equal to your 1280 MHz. So, this range if you look at it, this is like a 2x range which you 

have. That is what we call as a 2x range. So, for this 2x range, if we just change the divider 𝑁 here, 

what are the problems which we will face? Is there any issue or there is no problem at all? 

So, when we want to extend the output range of the PLL, in that case, let us write down the loop 

gain expression of the PLL. The loop gain is given by, 

𝐿𝐺 =
𝐼𝐶𝑃

2𝜋
(𝑅 +

1

𝑠𝐶1
)

𝐾𝑉𝐶𝑂

𝑠

1

𝑁
 

𝐿𝐺 =
𝐼𝐶𝑃𝐾𝑉𝐶𝑂(1 + 𝑠𝑅𝐶1)

2𝜋𝑠2𝐶1. 𝑁
 

So, here we have seen this multiple times. So, when we design our PLL, we design our PLL in 

general for the highest frequency which we have to minimize the jitter at the output. 

So, that is what we are going to do and then we did all our noise transfer function analysis and 

bandwidth and so on. Everything was done perfectly and in our example, let us say we want to 

change 𝑁, here 𝑁 which you are seeing, 𝑁 can be varied from 16 to 32. It is not only like 16 and 

32, but 16, 17, 18 or whatever 𝑁 you have, this is the variable range which you want. 

So, if I keep everything else constant and I vary this particular 𝑁, there are many assumptions 

which we can make to say that our design is a good design here or an optimized design, these 

assumptions may or may not be valid.  

So, first one is at 𝑁 = 32, so we have the loop gain as, 

𝐿𝐺 =
𝐼𝐶𝑃𝐾𝑉𝐶𝑂(1 + 𝑠𝑅𝐶1)

2𝜋𝑠2𝐶1. 32
 



Let us say, you did the noise versus bandwidth analysis. The noise versus bandwidth analysis gave 

you 𝐼𝐶𝑃, 𝑅, 𝐶1 for a given phase margin. If you had 𝐶2, then you will also get 𝐶2. For expression, 

I am not writing 𝐶2 but assume it is there. So, you get all these component values and 𝜔𝑢 = 2𝜋𝑓𝑢. 

So, your unity gain frequency is optimized for this case. 

Now, suddenly I go ahead and change 𝑁 to 16. What happens if I change from 𝑁 = 32 to 𝑁 =

16? My loop gain expression is given by, 

𝐿𝐺 =
𝐼𝐶𝑃𝐾𝑉𝐶𝑂(1 + 𝑠𝑅𝐶1)

2𝜋𝑠2𝐶1. 16
 

Now, for this loop gain expression, if you do not do anything, whatever unity gain frequency you 

had in the previous case, the unity gain frequency in the second case is you can say 𝑓𝑢
′ = 2𝑓𝑢. 

How did we get that? Well, from the loop gain expression, assuming your unity gain frequency is 

much larger than your zero frequency. So, you can find that out. It is given by, 

𝜔𝑢 =
𝐼𝐶𝑃𝐾𝑉𝐶𝑂𝑅

2𝜋. 32
 

This is what you had. Now, as soon as I change my 𝑁 factor, this is the 𝑁 factor which you get. 

So, we get, 

𝜔𝑢
′ =

𝐼𝐶𝑃𝐾𝑉𝐶𝑂𝑅

2𝜋. 16
= 2𝜔𝑢 

So, your unity gain frequency just changes and if your unity gain frequency changes, then your 

noise analysis is also going to change or the noise at the output, total jitter at the output changes. 

Now, previously 𝜔𝑢 might be the optimized bandwidth. Now 𝜔𝑢
′ is not at all the optimized 

bandwidth. It is just you can say a by-product of whatever you did to change the divider. 

So, this is something which may or may not be good for the design. This implies that in order to 

have an optimized design, bandwidth should be some function of the divider 𝑁. Now, you can say 

whether it should, so typically if it is the case that I want to cancel, the oscillator noise is dominant 

and the maximum bandwidth which we can have is 
𝑓𝑅𝐸𝐹

10
, so if you want to keep the bandwidth 



constant across the output frequency, then you can say I would like to keep the bandwidth directly 

proportional to 𝑁. 

So, here bandwidth is, in this case what you are seeing is the bandwidth is some value, here the 

bandwidth becomes twice ideally. I have to do something to this expression such that the 

bandwidth for this still remains 𝜔𝑢. It should not increase to 2𝜔𝑢. Yes, I know that this particular 

divider value changes, that is something which you need to fix. 

So, if you look at the loop gain expression which we had before, so, I will just write the expression 

here which we had earlier. So, we have, 

𝐿𝐺 =
𝐼𝐶𝑃𝐾𝑉𝐶𝑂(1 + 𝑠𝑅𝐶1)

2𝜋𝑠2𝐶1. 𝑁
 

I know that in this loop gain expression, my 𝑁 changes as per the required frequency. If 𝑁 changes 

as per the required frequency, I would like to change some other parameter. 

So, let us say you optimize everything at the highest frequency where you need the minimum jitter 

and then you would like to keep the bandwidth fixed because bandwidth is decided by the reference 

frequency, the maximum bandwidth, you cannot increase it more than a certain value. So, you 

would like the bandwidth as a function of 𝑁 and/or let me say the optimized bandwidth from noise 

versus bandwidth analysis. 

So, you would like to do that. Either thing is something which you will utilize. Now, given the 

PLL when you have this whole block diagram of the PLL or this thing, there are a few things 

which you cannot change. You cannot change the gain of the PFD. For the charge-pump, you have 

the charge-pump current that is something which is in your control. For 𝑅 and 𝐶, changing the 

capacitor 𝐶 is typically hard because capacitor has a large value and large area and adding 

tunability to the capacitor is difficult to implement or you can say it has a lot of cost in terms of 

area. 

Resistance is the other thing which you would, you can try to change. VCO is not that much in 

your control, but we will see how we can control the 𝐾𝑉𝐶𝑂. So, we look at each of these parameters 

and see whether we can change it or not. So, 𝐼𝐶𝑃, 𝐾𝑉𝐶𝑂 and this parameter. So, there are a few 

parameters which if you change, you may not find, few parameters may be easy to change without 



changing phase margin and other values. It will just help in retaining the unity gain frequency. A 

few parameters are difficult to change, but there is nothing which stops you from doing that. 

So, in this case, let us look at it, if I make 𝐼𝐶𝑃 ∝ 𝑁, for example, if such is the case, I can write, 

𝐼𝐶𝑃 = 𝑁𝐼0 

When I am getting this bias current, I make this 𝐼𝐶𝑃 proportional to the divider ratio, then in my 

loop gain expression, I am going to have, 

𝐿𝐺 =
𝑁𝐼0𝐾𝑉𝐶𝑂(1 + 𝑠𝑅𝐶1)

2𝜋𝑠2𝐶1. 𝑁
 

So, what you see is that your loop gain transfer function is actually independent of 𝑁, your unity 

gain bandwidth will be retained and all your noise transfer functions, they are going to be, so noise 

transfer function depends on loop gain, so only the thing is the charge-pump transfer function will 

vary but your loop gain will remain constant. Charge-pump noise transfer function has your 
𝐼𝐶𝑃

2𝜋
 in 

the expression other than the loop gain which will vary. 

Other than that, your unity gain bandwidth 𝑓𝑢 remains fixed, there is no change in the phase margin. 

Now, you can ask a question that how am I going to change 𝐼𝐶𝑃 with respect to 𝑁? Well, you know 

what divider ratio you are going to use. So, based on that, you can have a bias current which is 

switchable and from that bias current, you can change the charge-pump current. So, a very simple 

implementation you can think about it that you have an external current which is given to a diode, 

just an example, this is 𝐼0. 

And if I want to take this current as 𝑁𝐼0, maybe I can do this. So, I can, this is just one example, 

do not think that this is the only way you can do it. So, you can have switches here and these 

switches are going to finally give your bias current to your charge-pump. So, if I want this 

particular thing to be tunable from 𝐼0, I can keep this 1, 2, to 2𝑁𝐼0 if I want that. 

So, based on how much current you are switching in, this particular current is then mirrored in the 

charge-pump somehow. The basic charge-pump which you would like to use, you can mirror this 

current in the charge-pump. I am not showing the exact circuit but that is what you can do. So, in 

this way, you can control your charge-pump current. Now, this is one way to deal with this. 



Another thing is the 𝐾𝑉𝐶𝑂 variation. So, now normally we do not vary 𝐾𝑉𝐶𝑂 or we do not change 

the 𝐾𝑉𝐶𝑂 that much but if you like, if the design needs, that is also possible. The reason here is that 

as you change the 𝐼𝐶𝑃 current, your unity gain bandwidth remains fixed, but because you change 

your 𝐼𝐶𝑃 current and you are reducing your 𝐼𝐶𝑃 current, so the noise from the charge-pump current 

will, overall noise from the charge-pump current will increase. And if the overall noise from the 

charge-pump current increases, it may lead to a large jitter as compared to what you think. So, that 

is something which may go against while changing your 𝐼𝐶𝑃 with respect to your 𝑁 factor. 

(Refer Slide Time: 24:51) 

 

 



 

 



 

Then you look at varying 𝐾𝑉𝐶𝑂. So, the case which you have seen earlier is that to control the 

oscillator, you had this particular current source which feeds into your ring oscillator, for example. 

So, you have this ring oscillator whose output voltage is something which you are controlling, so 

this is your 𝑉𝑐𝑡𝑟𝑙 and this is your 𝑉𝐷𝐷𝑉𝐶𝑂. 

So, here we know the 𝐾𝑉𝐶𝑂 is defined as follows: 

𝐾𝑉𝐶𝑂 =
𝑑𝑓𝑉𝐶𝑂

𝑑𝑉𝑐𝑡𝑟𝑙
 

If you go and look at the exact curve on 𝑓𝑉𝐶𝑂 versus your 𝑉𝑐𝑡𝑟𝑙, you may find something kind of 

this curve. It may or may not be linear depending on the range which you want. So, this may be 

the lowest frequency and this may be the highest frequency, 𝑓𝑙𝑜 and 𝑓ℎ𝑖𝑔ℎ, let me write it like this. 

So, what you would like, so, when you are, think about it, when you are changing your frequency 

from 1280 MHz, 1.28 GHz to 640 MHz, what happens is this control voltage drops. Because of 

this drop in the control voltage, this voltage increases and this voltage also drops. That is how the 

oscillator frequency is controlled. So, this device in this whole of your transfer function, what you 

are looking at is the following. 

So, I am just writing let us say the DC gain of this loop, the closed loop gain is 1. We know that 

what we are seeing here is from your 𝑉𝑐𝑡𝑟𝑙, you change your PMOS gate voltage which is 𝑉𝑥, 𝑉𝑥 



changes 𝑉𝐷𝐷𝑉𝐶𝑂. So, exactly you change the same voltage. And this particular loop, you have a 

certain loop gain and the loop gain is given by, 

𝐿𝐺 = 𝑔𝑚𝑎𝑟𝑎 × 𝑔𝑚𝑝(𝑟𝑉𝐶𝑂||𝑟𝑑𝑠) 

So, this is the DC gain we have seen and at DC, these two control voltages are same. Now, what I 

want to do is I know that when the frequency of the oscillator reduces, at the same time the current 

of the oscillator will also reduce. So, in this particular case, if you want to change the 𝐾𝑉𝐶𝑂, what 

can you do? By the way, the gain which we are having here, this gain may not be large. 

So, there are a couple of ways in which you can do it. You can split this current source. So, earlier 

the current source which I had, a single current source like this with this node as 𝑉𝑥 and this 

particular value as 𝑉𝐷𝐷𝑉𝐶𝑂. I can change this maybe just for an example, I can have 𝑉𝑥 and a 

switch. So, you can have this here. Similarly, you can have multiple of these. So, you connect all 

of these and this is connected. 

So, by doing so, what you are actually doing is you are changing your 𝐾𝑉𝐶𝑂 and how will you 

change your 𝐾𝑉𝐶𝑂? Because you will change this 𝑔𝑚𝑝 and 𝑟𝑑𝑠. 𝑔𝑚𝑝 and 𝑟𝑑𝑠 are the values which 

you will change based on your current source. So, that is something which you will do and based 

on this, your 𝐾𝑉𝐶𝑂 will be changed. Now, here the difference is that the closed loop gain, if I just 

look at it, the closed loop gain, DC gain 
𝑉𝐷𝐷𝑉𝐶𝑂

𝑉𝑐𝑡𝑟𝑙
 is given by, 

𝑉𝐷𝐷𝑉𝐶𝑂

𝑉𝑐𝑡𝑟𝑙
=

𝐿𝐺

1 + 𝐿𝐺
 

So, ideally this is equal to 1 and depending on how much contribution you are having from here, 

this is going to change the 𝐾𝑉𝐶𝑂. Another way will be that if in case you are not using the amplifier 

and you only have this one directly as 𝑉𝑐𝑡𝑟𝑙, connected to 𝑉𝑐𝑡𝑟𝑙, so, let me just. So, if this node 

happens to be 𝑉𝑐𝑡𝑟𝑙, then you think about it, your 
𝑉𝐷𝐷𝑉𝐶𝑂

𝑉𝑐𝑡𝑟𝑙
 is given by, 

𝑉𝐷𝐷𝑉𝐶𝑂

𝑉𝑐𝑡𝑟𝑙
= −𝑔𝑚𝑝(𝑟𝑑𝑠||𝑟𝑉𝐶𝑂) 

𝑟𝑉𝐶𝑂 will also change based on the current which you are having in the oscillator. 



So, this is the gain which you, 
𝑉𝐷𝐷𝑉𝐶𝑂

𝑉𝑐𝑡𝑟𝑙
, this is the gain which you have. Now, by switching these 

current sources, in one case, you have all of them on and in the other case, you can think let us say 

few of them are on and the others are open. So, this is directly changing your 𝑔𝑚𝑝 and 𝑟𝑑𝑠 when 

𝑟𝑉𝐶𝑂 is also changed. 

So, in this way also, you can actually control the 𝐾𝑉𝐶𝑂 of the oscillator. All these things you can 

work out based on your design requirement. So, then the other thing which we would like to change 

is the resistor. Resistor and capacitor are the two other parameters which you can change. The 

problem while changing the resistor is, so one thing is the resistor itself is susceptible to process 

variation. So, if I vary resistor, 𝜔𝑧 also changes. 

So, the problem which you will see is that if you vary the resistor, because 𝜔𝑧 changes, so your 

phase margin will also change. So, one way is the unity gain bandwidth is only proportional to 𝑅. 

So, you look at this expression here. So, unity gain bandwidth is this.  

If the unity gain bandwidth is only proportional to 𝑅, you want to compensate for the unity gain 

bandwidth, but you would not like to change the zero location because that is going to compromise 

your phase margin. Then you can say that given the following two expressions: 

𝐿𝐺 =
𝐼𝐶𝑃

2𝜋

(1 + 𝑠𝑅𝐶1)

𝑠2𝐶1

𝐾𝑉𝐶𝑂

𝑁
 

𝜔𝑢 =
𝐼𝐶𝑃𝐾𝑉𝐶𝑂𝑅

2𝜋𝑁
 

So, let us say if 𝑁 reduces, I want to reduce my 𝑁 to keep the unity gain bandwidth constant. If I 

do that here, it is not sufficient because if I do this, reduce 𝑅, my zero frequency changes, so I have 

to increase 𝐶1. Now, if you increase 𝐶1, you see your loop gain again drops. So, this method of 

changing the resistor to compensate for the change in 𝑁 is not that fruitful. Because as 𝑁 reduces, 

you reduce 𝑅, to keep the same zero frequency, you increase 𝐶. So, your bandwidth remains fixed 

but what happens is your overall loop gain changes. So, that is what you will see. 

So, what we are doing here is the following. Let us just look at it. So, in one case, we had this 

particular you have 𝑠2, so I will just write it like this. So, when 𝑁 drops only, what you have is 

your loop gain, this is the magnitude of loop gain with respect to 𝜔. 𝑁 drops, your loop gain 



changes like this. So, this is going to do this. So, effectively you can say your unity gain frequency 

changes. 

So, how did you restore the unity gain frequency? You reduced 𝑅. So, reducing 𝑅 actually shifts 

your, reducing 𝑅, if you just take reducing 𝑅, then what it does? Reducing 𝑅, your unity gain 

frequency goes high. There are two changes. One, your 𝜔𝑧 changes, 𝜔𝑧 =
1

𝑅𝐶1
. So, I changed my 

𝜔𝑧, if I change my 𝜔𝑧, what I am doing is I am just shifting this curve. 

So, what I am doing here is I am just shifting the zero frequency, this is what I do. I shifted my 

zero frequency such that my unity gain frequency remains same. But what this has done is this has 

actually changed our unity gain frequency. So, then if my unity gain frequency has changed, then 

what I would like to do is I would like to increase my 𝐶1 to bring it back and if I increase my 𝐶1 

here, what I have done is, so I bring it back and I increase 𝐶1 such that my zero frequency remains 

same, so unity gain frequency to keep the same phase margin, that is what I need to do. 

Well, the curve is not exact, but what we are doing is I hope you got that idea, let me just remove 

this. So, by increasing 𝐶1, effectively you can say that my 𝑁 reduces, my 𝐶1 increases, I retain the 

same curve. So, this curve is retained by not changing 𝐼𝐶𝑃 but by reducing 𝑅 and increasing 𝐶1. 

The benefit of this is that the charge-pump noise does not increase with increase in 𝑁. But what is 

the cost? Large capacitor is the problem, large capacitor costs area on chip. 

So, what you see here is that every trick here has some trade-off associated with it. It is for the 

designer to decide which trade-off he or she would like to entertain. So, this is how we vary the 

bandwidth, we vary the output frequency or make the PLL, analog PLL, wide bandwidth. Thank 

you. 


