
Phase-Locked Loops

Dr. Saurabh Saxena

Department of Electrical Engineering

Indian Institute of Technology Madras

Lecture ‒ 57

Circuit-level Design of Clock Frequency Divider

(Refer Slide Time: 00:15)

Hello everyone. Welcome to this session. So, we have been discussing the PLL building blocks

and in the PLL building blocks, the last one which we are going to see is the clock frequency

divider. So, this is quite simple by the way as compared to the other blocks. So, what we need is

we need a block where we give in the input clock let us call as 𝐶𝐿𝐾𝐼𝑁 and we get 𝐶𝐿𝐾𝑂𝑈𝑇 and

𝐶𝐿𝐾𝑂𝑈𝑇 should have frequency which is lesser than the input frequency and it should be some

number which is fed externally.

So, to do that, one of the easiest ways of implementing a frequency divide-by-2, let us first look at

that, frequency divide-by-2, quite often you use that, divide-by-2, divide-by-4 and so on. So, it can

be implemented by using a D flip flop. So, you have 𝐷, 𝑄, �̅�, you have a clock and the output of

this D flip flop is connected in feedback in this manner. And this is your 𝐶𝐿𝐾𝐼𝑁 and this is your

𝐶𝐿𝐾𝑂𝑈𝑇.

So, the D flip flop is surely connected to 𝑉𝐷𝐷 and ground. Any circuit which we are using here

has 𝑉𝐷𝐷 and ground connection. So, if you look at it, when I give my 𝐶𝐿𝐾𝐼𝑁 like this, you can

start with the initial value 𝑄 = 0 and �̅� = 1. So, this is 𝐶𝐿𝐾𝐼𝑁, I am assuming that the initial value

of 𝑄 or 𝐶𝐿𝐾𝑂𝑈𝑇 is 0, that means �̅� = 1. If �̅� = 1 and you get a rising edge on this D flip flop, the

input which is �̅�, it is 1 right now. You get a rising edge on 𝐶𝐿𝐾𝐼𝑁, so you get output 1 and it

remains 1, the next output is going to change only at the next rising edge. So, when you get the

next rising edge, till that time, because �̅� = 0, at the next rising edge, your input was 0, so you get

this. So, in this way, you can very well implement divide-by-2 clock.

Now, if you want any frequency division where frequency division is in the order of exactly

frequency divide-by-2𝑁 whether 𝑁 = 1, 2, 3, 4. It is like divide-by-2, divide-by-4, divide-by-8,

divide-by-16 and so on. You can cascade these blocks. So, I will just erase this part a bit, remove

this also and connect it. I am going to cascade this, so this connection has to go like this, this is

𝐶𝐿𝐾𝐼𝑁 and similarly you can keep on going to have divide-by-2 or divide-by-4 and so on.

Now, these D flip flops which you are going to use for this particular division, these D flip flops

which are commonly used. There are two kinds of flip flops which we use. One is you can say

Strong-ARM latch based flip flop and the other is TSPC based flip flop. These are the two

commonly used flip flops. TSPC based flip flop has a lesser power consumption in general as

compared to strong-arm latch based flip flop and it is also quite fast, it can operate at a higher

frequency.

So, let us look at this TSPC based flip flop. So, what you have here is you have clock signals

coming like this, input is 𝐷, this is clock 𝐶𝐾 here and the output of this goes to another stage where

the next two stages, you give clock here also and at this place and the output goes here, I call this

as 𝐵. The output of this stage goes to another stage NMOS and this is here. So, this here and this

is clock. The output here is inverted.

So, if you want actually 𝑄 with respect to 𝐷, you can add another inverter and you can use that as

𝐷, this is 𝑄. So, if you want to look at the operation, let us just look at it. You have clock and 𝐷.

Let us say you are going to get the rising edge of the clock like this. Consider the case when clock

is 0, so, during the time when clock is 0, look at the signals 𝐵 and 𝐴.

So, when clock is 0, at that time, if 𝐷 = 1, 𝐷 = 1 that means your clock is 0 and 𝐷 = 1, so, this

transistor is turned off. 𝐷 = 1 means 𝐵 = 0. 𝐵 = 0 and clock actually is 0 which is like this

particular signal 𝐴 = 1 irrespective of the input. At clock 0, 𝐴 = 1. Now, 𝐴 = 1, this transistor is

cut-off, whatever �̅� value you have, it will be there and this transistor is also off.

Now, if 𝐷 was 1 and we see that your clock goes high. When clock goes high, at that time, this

PMOS transistor was initially active but because this was off, so, it was not doing anything. 𝐵 still

remains at 0. 𝐵 remains at 0, clock goes high, this transistor turns on, 𝐴 goes low. These two get

turned on, 𝐴 goes low. If 𝐴 goes low, your PMOS, this PMOS gets active. This NMOS gets active

but this NMOS is off because 𝐴 is low.

So, your �̅� signal actually goes high. High value because clock is 0, 𝑄 we do not know what the

𝑄 value is. It depends on what the previous value you had, �̅�. Now, when you get the rising edge

on the clock, what is going to happen is 𝐵 was 0. So, at that particular point because 𝐵 was 0 and

clock is high, this transistor is still off, this transistor is on but nothing will happen. 𝐴 will still

remain 1, 𝐴 does not change.

If 𝐴 remains 1, clock goes high, your �̅� actually goes low. 𝐵 still remains low because 𝐷 = 1.

Now, consider the case when 𝐷 = 0. In case 𝐷 = 0, at that time, your 𝐵 signal is going to be high

here and if 𝐵 signal is high, 𝐴 signal is surely also going to be high, �̅� whatever state you have

from the previous, it will continue and then when clock goes high because 𝐵 was 1 earlier, that

time your 𝐴 signal will go low. If 𝐴 signal goes low, then your �̅� signal will go high.

So, what you are doing here is you are sampling the input at the rising edge of the clock and here

you are actually keeping this as �̅�. Now, in order to have a 𝐷 flip flop based clock divider divide-

by-2, you can very well connect it in this manner. This becomes a divide-by-2 circuit with this

feedback, you do not have any 𝐷 here. If you want to cascade this, you can very well cascade this.

This kind of frequency divider is used at the highest frequency because you see that you are using

like a minimum number of transistors to divide the clock by 2. The problem with this logic is as

the frequency of operation is reduced, these node voltages which are actually held at 1 or 0, they

are not connected to 𝑉𝐷𝐷 or ground all the time with a direct path.

So, these nodes will start discharging or you have sub-threshold current for a long off duration or

long on duration for different transistors. Due to the sub-threshold current, the leakage will be

there and then you will have a different value at these internal nodes. So, normally we do not use

these TSPC based flip flops for frequencies lesser than 100 MHz, but this is very much technology

dependent. For lower frequencies, it is not advisable. The reason is because the nodes discharge

over a long on or off duration.

(Refer Slide Time: 12:14)

The other flip flop which we talked about is the D flip flop which is strong-arm latch based flip

flop. So, strong-arm latch based flip flop, it has a sense amplifier as I will show you here, so this

is strong-arm latch. So, you have a cross-coupled inverter connected in this manner. This connects

here and this one connects here. You have an input pair and a clock. So, if I am going to give 𝐷

here, there is an inverter here, I give here �̅�. It is like a differential input, you have clock here and

you have a reset thing at the output which is also with the help of a clock only.

This is connected to 𝑉𝐷𝐷. The output of this you can call it as 𝑉𝑜 and 𝑉�̅�. 𝑉𝑜 and 𝑉�̅� they actually

go to an RS latch. So, you have a NAND based, this is the RS latch which we use. You can have

a different method of implementation but the operation should be similar. These are R and S, this

is 𝑄 and �̅�. So, here R and S is 𝑉𝑜 and 𝑉�̅�. Now, you look at it, the strong arm, so, let us call, this

one is normally called as sense amplifier, this complete is a strong arm latch, sense amplifier and

this is RS latch.

So, when your clock is low, clock is low, your 𝑉𝑜 and 𝑉�̅� both these nodes are held high, they are

reset to 𝑉𝐷𝐷. When you have this particular, these things reset to 𝑉𝐷𝐷, your NAND gates are not

responding to anything, whatever values you have at 𝑄 and �̅�, that will be there. Now, when clock

goes high, it depends on what was the value at 𝐷. If previously 𝐷 was 1 or logic high, then you

have �̅� which is coming here as 0.

So, when 𝐷 = 1 and this node is 0, at that time what is going to happen is these two transistors get

active, this is 1, so, it will start conducting, this is off. When this conducts, your 𝑉�̅� value will go

down, your 𝑉�̅�, as your 𝑉�̅� value goes down, with the PMOS transistor this value is held high. So,

as 𝐶𝐾 goes high, if your 𝐷 = 1, 𝑉𝑜 = 1 or 𝑉𝐷𝐷 and 𝑉�̅� = 0. As soon as your 𝑉�̅� is actually equal

to 0, what happens here is your 𝑄, this if 𝑉�̅� goes to 0, this output, NAND gate output, this output

goes to 1 and this output will go to, if this output goes to 1, then what will happen is you have 1

and 1, this output will go to 0.

So, you can, let us say this is 𝑄 and this is �̅� in our case. Similarly, if 𝐷 was 0, at that time, 𝑉𝑜 = 0,

𝑉�̅� = 1 and if 𝑉𝑜 = 0, in that case, �̅� = 1 and 𝑄 = 0. So, it is changing the output 𝑄 and �̅� only

during the rising edge of the clock. It holds that value after that time, no more changes will be

taken into account because this cross-coupled latch holds the value. It is a regenerative latch, it

holds the value to 1 and 0 unless it is reset and brought to the same level and then again it will

decide.

So, these are the two flip flops which are commonly used. For the highest frequency with lower

power consumption, we will prefer TSPC. As the frequency goes lower, then we will prefer this.

You do not have any problem here with any node for high or low frequency. In this particular case,

you have direct connection to 𝑉𝐷𝐷 or ground for the outputs. So, these are the two flip flops which

we use. What we have seen so far is a divide-by-2 or 2𝑁.

Quite often you need frequency division not only in 2𝑁, you need frequency division like 4, 5, 6,

7 or something kind of that. So, those things can be realized by using divide-by-2/3. Divide-by-

2/3 is a basic circuit and based on this basic circuit, you can cascade such circuits to realize

different frequency division value. So, let us look at this basic divide-by-2/3. There is a lot of

literature which you can read how to cascade this divide-by-2/3 circuits and how the frequency

will change.

So, we will look at basic divide-by-2/3 circuit. So, here you use latches like this. You will have 𝐷,

𝑄 and a clock gating circuit. So, let me just make this as a clock here, this, this and this. So, there

are four such latches. Similarly, you have another latch, 𝐷, 𝑄 and clock and this will come at the

output like this. There is nothing like �̅� here and two of these latches are actually clocked at rising

edge of the clock and the other two latches are clocked at falling edge of the clock.

So, these two are at the falling edge of the clock and the other two are at rising edge. So, I will just

give the clock input here. Then the output of the one which is clocked at the rising edge, I call that

as LP1 and LP2, and the one which is at the falling edge, I call that as LN1 and LN2. This is input

frequency, the output of these latches are 𝑄𝑃1 and 𝑄𝑁1, this one is 𝑄𝑁2 and this one here will be

𝑄𝑃2. The output of this connects here and then you have a NAND gate which connects it like this.

And you have this particular one coming from this side. To control the divide-by-2/3, we use a

NAND gate. We will see how the division happens by 2/3 by the way, just hold for a minute. So,

you have one connection coming from here and another connection is external connection 𝑃. This

𝑄𝑃2 is also quite often written as 𝑀𝑂𝑈𝑇, we will see what it does. So, now, with this, in the presence

of these latches, this is like a state machine which you will see. So, we have,

𝑄𝑃1+ = 𝑄𝑁1̅̅ ̅̅ ̅̅ . 𝑄𝑁2̅̅ ̅̅ ̅̅

𝑄𝑁1+ = 𝑄𝑃1

𝑄𝑃2+ = 𝑄𝑁1

𝑄𝑁2+ = 𝑄𝑃2. 𝑃

If 𝑃 = 1, then it will have, otherwise it is going to be 0. Now, in this case, you will have, if 𝑃 = 0,

then the output frequency you can take at any node, these are all having the same frequency at the

output.

So, if you want you can take this as 𝐹𝑜𝑢𝑡 or even 𝑀𝑂𝑈𝑇 signal or 𝑄𝑃2 signal is also going to have

the same frequency. Then here if 𝑃 = 0, you divide by 2. If 𝑃 = 1, you divide by 3. How is it

going to do? Let us look at the state machine for this. So, to begin with, let us choose these states,

let me define the state first. So, state is [𝑄𝑁1 𝑄𝑁2, 𝑄𝑃1 𝑄𝑃2], these are the states.

So, we start with a state, let us say 𝑄𝑁1 is 0 which is here and 𝑄𝑁2 is also 0. So, 0, 0, if 𝑄𝑁1 this

is just like initial state, you can also fix that in the beginning. 𝑄𝑁1 is 0, 𝑄𝑁2 is 0, which is going

to say that 𝑄𝑃1 can be 1 and 𝑄𝑃2 is going to be 0. So, [00, 10] is the initial state. From here, you

are going to look at when you get the falling edge on the clock. So, when you get the falling edge

on the clock, I am going to denote that as �̅�, 𝜑 is the clock, you get falling edge on the clock.

So, based on the previous state, at the falling edge on the clock, only your 𝑄𝑁1 and 𝑄𝑁2 will

change, 𝑄𝑃1 and 𝑄𝑃2 remain same. So, this remains same, you have 10. 𝑄𝑁1+ = 𝑄𝑃1 which is

1 and 𝑄𝑁2+ = 𝑄𝑃2. 𝑃. 𝑃 is always 0. So, this will remain at 0 at �̅�. Then in the next time when

you get, at the falling edge this happens, then at the rising edge which is 𝜑 your 𝑄𝑁1 𝑄𝑁2 remain

same, it is the time for 𝑄𝑃1. So, what you see is 𝑄𝑃1+ = 𝑄𝑁1̅̅ ̅̅ ̅̅ . 𝑄𝑁2̅̅ ̅̅ ̅̅ , so, it will remain 0, this will

become 0 and 𝑄𝑃2+ = 𝑄𝑁1 which is 1.

Then you get another falling edge in the clock cycle, so, when you have falling edge, your 𝑄𝑃1

and 𝑄𝑃2 remain same. 𝑄𝑁1+ = 𝑄𝑃1, 𝑄𝑃1 is actually 0, so this is 0 and 𝑄𝑁2, it remains 0. Then

you get a rising edge on the clock and rising edge on the clock you know that this state will be

retained and what happens to, 𝑄𝑃1+ = 𝑄𝑁1̅̅ ̅̅ ̅̅ . 𝑄𝑁2̅̅ ̅̅ ̅̅ , so this becomes 1 and then you have 𝑄𝑃2+ =

𝑄𝑁1 which is also 0.

So, this cycle actually repeats here. If you look at this cycle, what you are going to see here is this

is happening at the falling edge and rising edge. With every falling and rising edge, you count half

a clock period. So, 1, 2, 3, 4. After 4 half clock periods, the state repeats here. So, what it means

is that if you have a clock like this, you can start from any state here, if you have a clock here, so

on the first falling edge 1, then rising edge 2, then falling edge 3, then rising edge 4.

So, after this the state repeats. So, if it is [00,10] here, it is going to come [00,10] state in the 5th.

So, this is how you are, so after every two clock periods, the output is repeating. Now, the other

thing which you can see here is whether you take 𝑄𝑃2. So, 𝑄𝑃2 here, it is 0, 0, then it becomes 1

and 1 which means that if I look at the digital signal at 𝑄𝑃2, 𝑄𝑃2 is 0 for two of these consecutive

and then it is 1.

So, this is, this particular signal is half the frequency of your 𝐹𝐼𝑁. And if you want to get this divide

by, you want to have, you can invert it at 𝑄𝑁1 and you can take this as 𝐹𝑜𝑢𝑡 if you are just doing

divide-by-2. Now, what happens in divide-by-3, it is better that I do it here itself because the state

diagram is here. So, I am going to start with the state let us say start with the same state [00, 10].

You get a falling edge on the clock, when you get falling edge on the clock, your 𝑄𝑁2 and 𝑄𝑁1

only change. So, I will, 𝑄𝑃1 and 𝑄𝑃2 will not change. So, 𝑄𝑁1, this remains 10, 𝑄𝑁1+ = 𝑄𝑃1

which is 1 and 𝑄𝑁2+ = 𝑄𝑃2. 𝑃. Here 𝑃 = 1 for divide-by-3. So, 𝑃 = 1, so, this is 0, you go to

[10,10]. Then you get a rising edge here, you will get the same state because 𝑃 only affects the

falling edge, it does not affect the rising edge.

So, I will get [10,01], same here. Then you get the falling edge. So, falling edge comes, 𝑄𝑃1

remains same, 𝑄𝑃1 𝑄𝑃2 remain same, 𝑄𝑁1 and 𝑄𝑁2. So, now, you see 𝑄𝑁1+ = 𝑄𝑃1 which is 0

and 𝑄𝑁2+ = 𝑄𝑃2. 𝑃. 𝑄𝑃2 = 1 here, 𝑃 = 1, so, this becomes [01,01]. So, your fourth state is

different from here. Then you get another rising edge of the clock. So, rising edge of the clock

𝑄𝑁1 state remains same, 𝑄𝑃1+ = 𝑄𝑁1̅̅ ̅̅ ̅̅ . 𝑄𝑁2̅̅ ̅̅ ̅̅ , so this is also going to be 0 and 𝑄𝑃2+ = 𝑄𝑁1

which is 0.

Then you get falling edge on the clock, when you get falling edge on the clock, what you see here

is this remains 00, 𝑄𝑁2+ = 𝑄𝑃2. 𝑃, so you get 00. Then you get rising edge of the clock, this

remains 00. And your 𝑄𝑃2+ = 𝑄𝑁1 and 𝑄𝑃1+ = 𝑄𝑁1̅̅ ̅̅ ̅̅ . 𝑄𝑁2̅̅ ̅̅ ̅̅ . So, if you look at it, we count how

many half clock cycles, 1, 2, 3, 4, 5, 6. So, after six half clock cycles, these signals actually repeat.

So, when they repeat, you know that if it is repeating after 6 half clock cycles, then it is like

repeating after 3 actual clock cycles, every 𝜑 and �̅� is your half clock period here. So, if I have

my clock cycle like this. Let us start to look at 𝑄𝑃2 here which is 𝑀𝑂𝑈𝑇. So, 𝑄𝑃2 = 1, falling

edge, I should start with the falling edge, 1, so 𝑄𝑃2 = 1, it remains 1, then it becomes 0. Then it

remains 0, it is 0 here and it is 0 here. So, 1, 2, 3, 4. So, for four of this, it remains 0, then it again

goes to 1.

So, this is the period of the divided clock. Previously, this is the period of the divided clock. So,

what you see here is that the divided clock is you can do a division by 2 or division by 3 and the

divided clock can be any of these signals for division by 2 and division by 3 circuits. Then the

important thing here is that you do not have a 50% duty cycle, this is only your 𝑇𝐼𝑁.

So, the duty cycle of the divided clock here for divide-by-3 is not 50%. Quite often it is okay not

to have it at 50%. It will work fine if things only depend on the rising edge of the clock. So, now

if we want to have any division ratio, what you can do is you can cascade these divide-by-2/3

circuits. There is a NAND gate which is going to, this is 𝑀𝐼𝑁. Now, you will divide by 3 only when

𝑀𝐼𝑁 = 1 and 𝑃 = 1.

You will not divide by 3 otherwise. This is needed when you cascade these blocks. So, I will just,

this block is equivalent, so, well, you have this also, this is 𝐹𝑜𝑢𝑡 here, you have 𝐹𝐼𝑁, 𝐹𝑜𝑢𝑡, this is

divide-by-2/3, you have 𝑀𝑂𝑈𝑇 and 𝑀𝐼𝑁, these are also the inputs. So, you cascade this block. So,

I am going to cascade these two blocks, this is just an example, and the output from here, it goes

to this and this is something you get with a NOR gate.

Your 𝑀𝑂𝑈𝑇, first it goes here, this I call this as 𝑀1
′ . This 𝑀𝐼𝑁 is always connected to 𝑉𝐷𝐷. So, that

means whatever you want divide-by-2/3 in this circuit, it is you can get it, this is 𝐹1, 𝐹2. You can

get finally divided clock at the same flip flop at where you are feeding the inputs. And then what

you have here is this 𝑃0. You have 𝑃 also, so I will just write this as 𝑃.

So, this is 𝑃0 and then you have here 𝑃1 and this particular signal is going to add as 𝑃2. So, based

on this 𝑃0, 𝑃1 and 𝑃2, you can load this using some registers. So, based on this 𝑃0, 𝑃1 and 𝑃2, you

can get different values of the division like 4, 5, 6, 7 in this case. This is an example, you can work

it out that how this is going to give you divide by 4, 5, 6, or 7. So, when you want a larger division

ratio and such kind of numbers, you can actually cascade such blocks, load these control signals

𝑃0, 𝑃1 and so on and you can get the division ratio which you like.

So, that brings us to an end of the discussion on the building blocks of PLL. And next we are going

to see what the other problems with the PLL are or what we can do to improve one or the other

performance metric of the PLL as a whole. Thank you.

