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Hello everyone. Welcome to this session. We have been looking at the PLL building blocks 

and in the last session we looked at PFDs, phase frequency detector is the one which we looked 

at. We looked at two different phase frequency detectors. One was the D-flip-flop based and 

the other was the NAND based. 

There are other PFDs also or other implementations of the PFDs. And let me just, if I want to 

summarize, you have seen D-flip-flop based, you know what kinds of problems you have, D-

flip-flop based PFD. You have seen NAND based PFD, and there were two different 

architectures for that. One with all NAND gates and the other with a slight modification on that 

NAND gate. 

The other one which we will not go in this, you can always refer to the literature for that, pass-

transistor based PFD, and another one is glitch-latch based PFD. The reason that we have other 

two PFDs, pass-transistor and glitch-latch based PFD, is specifically to reduce the reset time 

and to minimize the window during which the average output of the PFD is negative even when 

the phase error is positive. 



But you have other designs also. This list is not ending here, there are many designs. The only 

reason why I will stop with the NAND based PFD is because D-flip-flop and NAND based 

PFDs are most commonly used unless that negative region becomes too critical. 

So, in the NAND based PFD, you have seen 2-input NAND gates. So, you have seen 2-input 

NAND gates, 3-inputs and even 4-input NAND gates. Now, when you have different input to 

the NAND gates, you want that the output of the NAND gate when you implement, the output 

should make a transition in the same way whether input A changes or input B changes. 

For example, if you have a NAND gate like this, A and B and the output is Y. Let us say A is 

1 and B is also 1 or logic high. And A makes a transition like this, and then after some time, it 

becomes, it is back to high. If A makes a transition like this and B remains high, your Y output 

A NAND B, your Y will be equal to 1. 

Because what you have is, so, our operation is, if you look at it, A, B and Y, when A is 0 and 

B is 0, this is 1. When A is 0, B is 1, then also it is 1. When this is 1, this is 0, then also this is 

1. And when A and B both are 1, the output is 0. So, the output was 0 and after some time, 

when you make a transition at A, what happens is that A and B both, A becomes 0, B is equal 

to 1. So, after some time, your Y will become 1. And then let us say when A is back again, you 

will have Y as 0 again. So, this will happen. 

Now, let us say that in place of A, your B changes. So, A remains the same, B changes, B 

becomes low. In that case, your Y will again become high, this is going to happen. Now, in this 

case, if you look at it, the delay between the transition time between A and Y and the transition 

between your B and Y, these two transition delays should be same ideally. 𝑡𝑑1 = 𝑡𝑑2, final 

logic is surely going to be the same, but the PLL operation would also require that this should 

also be same and the reason is because this is NAND based PFD, your A and B signals will be 

like your reference clock and your feedback clock. And if you have a phase error, you do not 

want the output to be changing with respect to the sign of the phase error. It should change by 

the same amount whether it is positive or it is negative. 

But what happens when you implement this NAND gate using transistors? So, when we 

implement using transistors, the logic which you see is like this and then you have something 

like this. So, this is your typical NAND gate, you have A and B and this can be A and B. Now, 

here the parasitic capacitance at each node actually differs. So, consider the case when A and 

B both were equal to 1. At that time, this was discharged or if you think the other way when A 

is 0 and B is 1, either A is 0 and B is 1.   



When A goes to 1, at that time, because B was already 1, so, this would have been discharged 

to 0, and then when A goes 0 to 1, at that time, you are going to discharge only this node, the 

capacitor which you are having here, C1 and C2 here. In place, if you have A as 1 initially and 

B as 0 and if A was 1, the output node, this Y node is actually, if you look at it, B was 0. So, 

this node, because B is 0, and this is 1. So, output node was initially 1, and this particular node, 

because A is 1, this is charged to you can say 𝑉𝐷𝐷 − 𝑉𝑡 and when A, B goes from 0 to 1, you 

discharge this particular node from 𝑉𝐷𝐷 − 𝑉𝑡 to 0. So, kind of charging and discharging which 

is happening in the NAND gate, it depends on whether A is triggering the change in the output 

or B is triggering the change in the output. This will make the input transition to output 

transition delay dependent on the signals A and B which is not desirable. 

So, what we would like to do is we want to make it symmetric with respect to the inputs. So, 

you can make it symmetric by using the symmetric gate where for each transition, same thing 

happens. So, I can do this, in place of using one branch, I will use two branches. So, they both 

are connected like this. So, then if the transition is triggered at Y from high to low, then whether 

A triggers the transition or B triggers the transition, it is going to be same from A and B to 

output. So, you can say this is like a symmetric NAND gate. It is possible to do in case when 

you have 2-input NAND gate. For 3-input NAND gate, it becomes little difficult because at 

some point of time, you cannot have all the possible combinations, with two, it is easy. So, here 

I have A, B, C and Y. 
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So, you will have a typical NAND gate which you are using like this which is A, B and C here, 

A, B and C, and then in place of using only one branch, we can use, see there are three positions, 

so total number of combinations are large, but using only single branch will have more errors 

or more variation in the transition delay. So, in place of using that, I will try to use another one 

where I can have A, B, C.   

It will normally be B, C, A and then, so, each transistor occurs at the same position in the 

branch once, C, A, B. So, you can do this, and this is your Y output. Similarly, you can do for 

4-input NAND gates. It is true that if we have these three locations and we would like to have 

all possible combinations, then you may use another three such branches to have all possible 

combinations but that is going to increase the parasitics and this becomes more cumbersome 

when you start designing for 4 inputs. So, somewhere you have to make peace with the 

transitions and then you can use it. 

But ideally, if you ask me the question, then ideally if I do not want any variation with respect 

to the change at the input to the change in the output, if I do not want any change in the 

transition delays, then I should use all possible combinations like this. So, this completes our 

discussion on the NAND based PFDs. Thank you. 


