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In this session, we are going to look at the PLL blocks which we used in our simple implementation 

of the PLL block diagram where we used a mixer to get the phase error, then we had a loop filter 

followed by the VCO. So, first part was the phase detector, and this is something which we have 

seen, we will go in a little bit more detail for this phase error detector. 

So, this part is phase detector. Our input and output signals are sinusoidal, so I will just write it 

here.  

𝑉𝑖𝑛 = 𝐴𝑖𝑛 sin(𝜔𝑖𝑛𝑡 + 𝜑𝑖𝑛(0)) 

𝑉𝑜𝑢𝑡 = 𝐴𝑜𝑢𝑡 cos(𝜔𝑜𝑢𝑡𝑡 + 𝜑𝑜𝑢𝑡(0)) 

So, from the previous exercise, we know that, 

𝑉𝑒 =
𝐴𝑖𝑛𝐴𝑜𝑢𝑡

2
[ sin((𝜔𝑖𝑛 + 𝜔𝑜𝑢𝑡)𝑡 + 𝜑𝑖𝑛(0) + 𝜑𝑜𝑢𝑡(0)) + sin((𝜔𝑖𝑛 − 𝜔𝑜𝑢𝑡)𝑡 + 𝜑𝑒𝑟(0))] 

This is to begin with. 



So, this is what we have as the error voltage for the phase error detector in the locked state of the 

PLL. When will we say that the PLL is locked or in steady state? When the output frequency is 

equal to the input frequency and when the phase error does not change, you have a constant phase 

error, if any. So, if that is the case, then,  

In the locked state of PLL: 𝜔𝑖𝑛 = 𝜔𝑜𝑢𝑡 = 𝜔0, 
𝑑𝜑𝑒𝑟

𝑑𝑡
= 0 

The error voltage is given by, 

𝑉𝑒(𝑡) =
𝐴𝑖𝑛𝐴𝑜𝑢𝑡

2
[ sin(2𝜔0𝑡 + 𝜑𝑜𝑠1) + sin(𝜑𝑒𝑟)] 

So, you will have some steady state phase error, whether that is zero or not that is not something 

which is important for the locking of the PLL. What is important is whatever phase error you have, 

that should be constant in the locked state. So, in the locked state, you have the error voltage given 

by this. 

Now, if the error voltage is like this, it is having a 2𝜔0 component and it has a fixed component. 

So, there are two portions, one is variable and the other which is not changing. If you have a filter 

at the output of the phase error detector, then the filter will pass on the DC component of the phase 

error. So, I will just plot here what all error voltage components you have. You have here, one is 

you have a DC component which is sin(𝜑𝑒𝑟) and the other component is at 2𝜔0. 

So, this is the frequency spectrum of the error voltage. So, for phase error detector, we define the 

average of the error voltage in steady state. The average of the error voltage in steady state is given 

by, 

𝑉�̅� =
𝐴𝑖𝑛𝐴𝑜𝑢𝑡

2
sin(𝜑𝑒𝑟) 

The average voltage for sin(2𝜔0𝑡 + 𝜑𝑜𝑠1) term will be equal to 0. So, the component which you 

are going to see here is 
𝐴𝑖𝑛𝐴𝑜𝑢𝑡

2
sin(𝜑𝑒𝑟). So, if you look at the operation of the phase error detector 

as we saw earlier, there are two components and the average voltage of the phase error detector 

output is sin(𝜑𝑒𝑟). 
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As I said, in locked state, the phase error does not change. If the phase error does not change, the 

average error voltage is going to be fixed and this average error voltage as you see is having 

sin(𝜑𝑒𝑟). So, this is little interesting that the average error voltage at the output of the phase 

detector is not a linear function of the phase error. It is actually a non-linear function and that non-

linear function is sin wave here, like this. 

This is your phase error π and this is your phase error -π. The peak amplitude is going to be 
𝐴𝑖𝑛𝐴𝑜𝑢𝑡

2
 

and the peak appears at phase error π/2. So, if I would like to define the gain of this phase error 



detector (𝐾𝑃𝐷). It is defined as the derivative of the average error voltage with respect to phase 

error. 

𝐾𝑃𝐷 =
𝑑𝑉�̅�

𝑑𝜑𝑒𝑟
=

𝐴𝑖𝑛𝐴𝑜𝑢𝑡

2
𝑐𝑜𝑠(𝜑𝑒𝑟) 

Why is this important? It is important because in case your PLL is locked and you make any 

change, so, let me just pick up this case that my PLL is locked and I will use two cases. In one 

case, the PLL is locked to phase error of 0. So, if I lock to a phase error 0, at this particular point, 

if I make any change in the input phase of the PLL, that means that I am going to change some 

phase here at the input of the PLL, the gain by which my output is going to change, that gain is 

going to be close to the value which you have near phase error equal to 0. 

So, what is the gain for phase error equal to 0? 

𝐾𝑃𝐷|𝜑𝑒𝑟=0 =
𝐴𝑖𝑛𝐴𝑜𝑢𝑡

2
× 1 

If the phase error in the locked state happens to be π/4 and I make any small change around that 

phase error of π/4 in steady state, the gain of the phase error detector is different. 

𝐾𝑃𝐷|𝜑𝑒𝑟=𝜋/4 =
𝐴𝑖𝑛𝐴𝑜𝑢𝑡

2
× 𝑐𝑜𝑠(𝜋/4) =

𝐴𝑖𝑛𝐴𝑜𝑢𝑡

2
×

1

√2
 

So, if you think about it, in the same PLL in locked state, we can have different phase errors and 

in the locked state, if you make any change in the input phase errors, then what you will see is the 

gain by which your error voltage is going to change is going to be different. 

So, it is not linear, that is why this happens. Whether this will have any consequence on the 

operation of the loop in steady state, this is something which we will see later. Now, for this 

particular phase error detector, we see how it operates. Another important part here is the case 

when you have frequency error. So, I will just deal with the case with frequency error. 
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PD with frequency error at the input: 

So, let us say when you start your PLL, you have frequency error at the input. So, I will just write 

here that 𝜔𝑖𝑛 = 𝜔0, and 𝜔𝑜𝑢𝑡 = 𝜔0 − ∆𝜔 so that our expressions simplify. So, in this case, the 

error voltage is given by, 

𝑉𝑒 =
𝐴𝑖𝑛𝐴𝑜𝑢𝑡

2
[ sin((2𝜔0 − ∆𝜔)𝑡) + sin(∆𝜔𝑡)] 

So, even when you do not have phase error to begin with, you have only frequency error, we have 

seen earlier you get a component which is proportional to ∆𝜔. So, for small frequency errors ∆𝜔, 

the error voltage is going to be proportional to that frequency error. This is important when we are 

considering the loop filter. That is why I brought this up here that the output of the phase error 

detector does not have information only about the phase error, but it has information about the 

frequency error also. 

So, when we consider the loop filter which we have seen earlier as a simple RC filter, you can 

have any kind of filter there, but to begin with, we used a simple RC filter. So, this is Ve(s) and 

Vc(s) in our case. The example which we took earlier was this R and C, this is our Ve, this is our 

Vc. The loop filter transfer function in this case is going to be, 

𝐿𝐹(𝑠) =
𝑉𝑐(𝑠)

𝑉𝑒(𝑠)
=

1

1 + 𝑠𝑅𝐶
 



The bandwidth of this filter (𝜔−3𝑑𝐵) in radians per second is given by, 

𝜔−3𝑑𝐵 =
1

𝑅𝐶
 

So, for this particular loop filter, I will write this as |LF(ω)| here and what we have is this filter 

transfer function and we can take this as -3 dB bandwidth. 

Now, when we considered the phase error detector with only phase error with no frequency error, 

we had a constant term which is DC term. So, a loop filter with any bandwidth will be able to 

process that phase error information with no frequency error like the phase error in steady state or 

the phase offset. But if you have this frequency error ∆𝜔, it very much depends whether you are 

having this ∆𝜔 component here or you are having the ∆𝜔 component here. 

We take two cases, ∆𝜔1 and ∆𝜔2. In the first case, ∆𝜔1 < 𝜔−3𝑑𝐵. So, when you start your PLL, 

you have frequency error and if the frequency error is lesser than the bandwidth of the filter, the 

information about the frequency error is present in this variable, sin(∆𝜔𝑡). It is not going to be 

filtered by the loop filter and the output frequency of the VCO will change in the desired manner. 

In the other case, where ∆𝜔2 > 𝜔−3𝑑𝐵, even when you have the frequency error information in 

the error voltage, that is going to be filtered by the loop filter because that is coming beyond your 

filter bandwidth. So, if you are rejecting the frequency error information by the loop filter, the 

VCO will not be able to correct for that frequency error. 

In both the cases, if the frequency error is small, most of the time your other frequency component 

which is 2𝜔0 − ∆𝜔 will lie much beyond the filter bandwidth, that will be rejected most of the 

time unless you choose a very wide filter where even the 2𝜔0 − ∆𝜔 component will come in, that 

is not a practical case. So, while you are choosing the filter bandwidth, it is very important to keep 

in mind what kind of frequency error you are targeting to compensate or trying to recover in the 

PLL. So, this is a very basic implementation and basic requirement of the loop filter. 
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The next important block which we have been using is the voltage controlled oscillator. We need 

to know how this output frequency changes. So, here we have seen earlier that, 

𝜔𝑜𝑢𝑡 = 𝜔𝑓𝑟 + 𝐾𝑉𝐶𝑂𝑉𝑐 

This is what we have seen earlier. Now, in this particular case, if you make any change in the 

control voltage, you are going to change 𝜔𝑜𝑢𝑡. 𝜔𝑓𝑟 is the free running frequency which you have 

as 𝜔𝑜𝑢𝑡 when the control voltage is 0.  

𝜔𝑜𝑢𝑡 = 𝜔𝑓𝑟, when 𝑉𝑐 = 0 

Here, we are considering that our control voltage is greater than 0. 

𝜑𝑜𝑢𝑡 = ∫ 𝜔𝑜𝑢𝑡 𝑑𝑡 = ∫ 𝜔𝑓𝑟 𝑑𝑡 + 𝐾𝑉𝐶𝑂 ∫ 𝑉𝑐 𝑑𝑡 

𝜑𝑜𝑢𝑡 = 𝜔𝑓𝑟 𝑡 + 𝐾𝑉𝐶𝑂 ∫ 𝑉𝑐 𝑑𝑡 

So, what you see here is that you have an integral with respect to control voltage. 

Now, given this relationship where 𝜔𝑓𝑟 is always there, most of the time we are interested in the 

change in output phase with respect to the change in the control voltage as given by, 



∆𝜑𝑜𝑢𝑡 = 𝜔𝑓𝑟 𝑡 + 𝐾𝑉𝐶𝑂 ∫ 𝑉𝑐 𝑑𝑡 − [𝜔𝑓𝑟 𝑡 + 𝐾𝑉𝐶𝑂 ∫(𝑉𝑐 − ∆𝑉𝑐) 𝑑𝑡] 

So, the change in the output phase with respect to the change in the control voltage is given by, 

∆𝜑𝑜𝑢𝑡 = 𝐾𝑉𝐶𝑂 ∫ ∆𝑉𝑐 𝑑𝑡,      In time domain 

Why are we interested in this? Because in locked state, if you make any change in the phase error 

by changing either the input phase or output phase, that is going to change the error voltage which 

will change the control voltage. So, we would like to see how we change the output phase and the 

relationship is shown here. Now, an interesting part is the expression which you are seeing is in 

time domain. If we convert this expression into frequency domain, what is it going to be? 

∆𝜑𝑜𝑢𝑡(𝑠)

∆𝑉𝑐(𝑠)
=

𝐾𝑉𝐶𝑂

𝑠
 

This is an integrator. This is the transfer function of the VCO. So, interestingly, if you look at it, 

for the phase error, we found the time domain waveforms and most of the time we use 𝐾𝑃𝐷 which 

is proportional to the phase error, a constant gain, most of the time that is what we are going to 

use, that gain may vary depending on the phase error which you have in the locked state. With 

respect to the loop filter, we have a fixed voltage transfer function and with respect to the VCO, 

our transfer function is from the control voltage to the output phase. 

So, quite often what we do is that we become lazy in writing Δ all the time. So, we say, 

𝜑𝑜𝑢𝑡(𝑠)

𝑉𝑐(𝑠)
=

𝐾𝑉𝐶𝑂

𝑠
 

This is the transfer function of the VCO. Well, it may or may not be necessary that these things 

are mentioned explicitly, but when we are writing the transfer functions for the PLL block where 

you see all kinds of non-linearities, you have a mixer, you have a voltage to frequency change and 

so on, most of the time we are interested only in small changes in the PLL block while writing the 

transfer functions of the PLL. 

So, let me just write it down that in actual PLL, you have PD, you have loop filter and you have 

VCO. When I represent all these blocks by their respective gains, what I am interested in is for the 

small changes in the input and the output. So, absolute terms are 𝜑𝑖𝑛, 𝜑𝑜𝑢𝑡, 𝑉𝑒, 𝑉𝑐. When I define 



the gain of different blocks, the interesting thing to me is when I change my input phase by ∆𝜑𝑖𝑛, 

it is going to change the error voltage by ∆𝑉𝑒 which will change the control voltage by ∆𝑉𝑐 which 

will change the output phase by ∆𝜑𝑜𝑢𝑡. 

So, these are all the small changes in steady state error, phase and frequency variables and the 

voltages. So, when we write the gain of all these blocks, what we are analyzing actually is, we 

have phase detector, loop filter and VCO, and the interesting parts to us are ∆𝜑𝑖𝑛, ∆𝑉𝑒, ∆𝑉𝑐, and 

∆𝜑𝑜𝑢𝑡. For a small change in the phase error, we have seen for the phase error detector what kind 

of gain do we have, 𝐾𝑃𝐷. So, this is operating on the phase error. 

So, the small signal block diagram or you can say the analysis block diagram for the PLL, you 

have phase error which comes at the output of the PD. So, I have ∆𝜑𝑖𝑛, and ∆𝜑𝑜𝑢𝑡 to be coming 

from the feedback, this is positive, this is negative. This is ∆𝜑𝑒𝑟 and this error gets multiplied by 

the gain 𝐾𝑃𝐷. It gives you error voltage ∆𝑉𝑒 which gets multiplied by the loop filter transfer 

function. By the way, the loop filter is passive here with R and C, it does not change whether the 

input is small or large. You have ∆𝑉𝑐 here and then you have VCO whose transfer function we 

found is 
𝐾𝑉𝐶𝑂

𝑠
. 

So, this is the block diagram, or you can say the small signal diagram which we are going to use 

in our analysis for small changes in the input and output. And because we have to draw this 

diagram time and again, what are we going to do? We are going to drop this ∆ everywhere and we 

say, we are having 𝜑𝑖𝑛, 𝜑𝑒𝑟, and so on. So, actually, we have, 

∆𝑉𝑒

∆𝜑𝑒𝑟
= 𝐾𝑃𝐷 

But, mostly we will write, 

𝑉𝑒

𝜑𝑒𝑟
= 𝐾𝑃𝐷 

This is just to drop the Δ from our analysis, but we are dealing with small changes only. Thank 

you. 


