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Hello everyone. Welcome to this session on PLL building blocks. So, after looking at the loop 

gain, phase margin and noise analysis in PLLs at system level, what we will do is we will now 

move on to the block level design for PLLs. The first one which is the most important block in 

PLL is the oscillator. So, let us look at what is this block, how does it work and how we are 

going to design it. 

So, we have repeatedly used a block named VCO, voltage controlled oscillator, where we 

control 𝑉𝑐 and we get 𝑉𝑜𝑢𝑡 whose frequency we can control. So, just to add details to this block, 

this block connects to the supply VDD and ground, and you do not feed any other signal other 

than the 𝑉𝑐 signal and 𝑉𝑐 controls only the frequency. It does not control the amplitude of the 

oscillator.   

So, you have this 𝑉𝑜𝑢𝑡. So, you can think about it, this particular block operates standalone, it 

takes power from the VDD and converts that to one particular frequency, whatever frequency 

you have, so, 𝑉𝑜𝑢𝑡 can be given as follows: 

𝑉𝑜𝑢𝑡 = 𝐴 sin(𝜔0𝑡) 



𝑉𝑜𝑢𝑡 can be a sine wave or it can be a square wave of the same time period. It depends on the 

kind of oscillator which you have.   

So, this is the time period of the oscillator and this time period 𝑇 =
2𝜋

𝜔0
. So, the oscillator as a 

standalone block generates frequencies depending on the control voltage. Somehow this 

control voltage will relate to 𝜔0, but there is no other input to the oscillator, there is nothing 

like sinusoidal input because of which you are generating 𝜔𝑜𝑢𝑡, no, it does not happen like that. 

So, we need to design this block actually and there are multiple options before you for this 

block which can generate sinusoidal output.   

So, let us look at the options which are available to substitute your VCO. The first one is crystal 

oscillator. This is the part which we saw in the very beginning of this course. So, crystal 

oscillator operates on the piezoelectric phenomenon and the characteristics of this crystal 

oscillator are as follows. It is generally a low frequency output which you get. The frequencies 

are low, it may be ranging from a few kHz to a few 100 MHz at the max.  

So, the output is low frequency. The frequency stability is excellent. So, what is frequency 

stability? I will just tell you. Frequency stability is excellent here, so when you have a crystal 

oscillator whose output is at frequency 𝑓0, 𝑓0 is a function of device sizes within the crystal 

oscillator and this frequency 𝑓0 may vary depending on the temperature, depending on the 

voltages which we are feeding to the crystal oscillator and other process parameters.  

So, that variation, in case for the frequency, you are not applying any force, any sinusoidal 

inputs to the system. This is the oscillator standalone, it has its frequency output at 𝑓0 but 𝑓0 can 

vary. So, whatever the variation you have in the output frequency by the nominal frequency or 

you can say the average frequency into 106 is measured as parts per million. This is the 

frequency error.   

So, the frequency error in crystal oscillator is very low and that is why we say that the frequency 

stability is excellent. This is typically in the range of 10 to 100 ppm. It depends on what kind 

of crystal you are choosing. Then the other important metric for the oscillator is your phase 

noise.   

So, crystal oscillator comes with excellent phase noise. What is this phase noise? Well, it means 

that if you use the oscillator standalone as a clock, the jitter is going to be very low or the phase 

noise is very less. So, if you look at the spectrum of the crystal oscillator, you may get a tone 



and then very low phase noise, it is like the perturbations near the output frequency are going 

to be quite low, that is what you are going to have whereas in other oscillators, you may get a 

lot of phase noise. So, this is the crystal oscillator output spectrum. The only bad part about the 

crystal oscillator is they are quite bulky.   

So, crystal oscillators are bulky. You cannot integrate these crystal oscillators with your 

integrated circuits because they are too big. So, you cannot integrate on your IC and having 

multiple crystal oscillators even on the PCB board will be too much because they occupy a 

good amount of area. So, this is one of the drawbacks of the crystal oscillators.   

The good part is the frequency stability and the phase noise. So, in case you need low frequency 

output, you need a low frequency clock and you are not integrating on chip, you are integrating 

on board, you need only one part of one oscillator, you may be good enough to use the crystal 

oscillator in place of using any PLL, but that is the limit.   

As we move ahead and start realizing the oscillator using tuned oscillators which are tuned LC 

oscillators, this is something which we saw when we told that the electrical model of the crystal 

oscillator can be realized using RLC components. From there we found that the frequency was 

limited by L and C, inductor and capacitor values. So, we can go and choose the inductor and 

capacitor values as we want, and we can realize that.   

So here, the frequency is not the limit. Low frequency will have its own problems because 

inductors may be very large, but you can get in general low to high frequency outputs. 

Frequency is not an issue provided you are ready to sacrifice the area for the inductors but that 

area is not as large as the area for the crystal oscillator unless you go to a very low frequency.   

The other thing is that the frequency stability is not excellent I would say but frequency stability 

is good. So, it is going to vary, no doubt about it. So, 𝐹𝑒𝑟𝑟𝑜𝑟 will actually be large. It can vary 

from 100 ppm or depending on the values, it can vary up to 1000 ppm in general.   

The next one is phase noise. The phase noise is good but not as good as the crystal oscillator. 

So, phase noise may increase, just for an example, I may have a larger phase noise like this in 

comparison to your crystal oscillators. Then, when we come to the point of integration, they 

can be integrated on chip at the cost of large area for inductors. So, as you go to the lower 

technology nodes where the chip price per unit area is quite large, integrating these inductors 

may not be an option always.   



So, initially the inductors were kept outside the IC because they were huge. As the silicon got 

cheaper, we have started integrating the inductors on chip also. So, it completely depends on 

the value of the inductor which you are having whether you will integrate on chip or put it on 

board.   

So, the examples of tuned LC oscillators are Colpitts oscillator, Clapp oscillator, Hartley 

oscillator. Another one bad part about this I would say is that the frequency tuning is limited, 

frequency tuning range is limited. In case of the crystal oscillators, frequency tuning range 

actually does not exist. So, once you design a crystal oscillator, the frequency whatever the 

frequency you have, that is what you get, frequency tuning range is roughly absent. So, you 

have to design it carefully for the desired frequency.   

Here the frequency tuning range is limited, and the reason is that the frequency at which it is 

oscillating is roughly equal to or is equal to 
1

𝐿𝐶
. So, how much capacitor you can vary will 

depend on that and there will be limitations on that also, you cannot vary inductor that easily 

for an LC oscillator.   

As you see in comparison to the crystal oscillators, the good part about this is that it can be 

integrated on chip, and you get a wide range of frequencies during the design process. So, this 

low to high frequency output is during the design process. Once you have designed the 

oscillator, you cannot tune that frequency that is the frequency tuning is very limited. So, these 

are the good parts about the tuned LC oscillators. The bad part with respect to the crystal 

oscillators is that these two things are not that great. Now, the other one because we are looking 

for the things where in our PLL we can vary the output frequency, we want good stability also 

in those things. So, there exist another kind of oscillators and these are ring oscillators.   

So, in ring oscillators, you can have a large tuning range during the design process and once it 

is designed by controlling few things, you can have large output tuning range. So, this is like a 

good part of it. The frequency stability is poor which is like you cannot use the ring oscillator 

standalone without keeping it in the phase-locked loop because the frequency will vary 

depending on process, voltage and temperature.   

So, frequency stability is poor, phase noise is also poor, a lot of phase noise, so if you are 

looking at this, standalone ring oscillators may have a lot of phase noise. You can easily 

integrate it on chip, integration on chip is not at all a problem. They occupy a very small area 



and can be easily integrated on chip. So, if you want multiple ring oscillators on chip, you can 

easily integrate them.   

So, if we think about it, large tuning range is a good part, frequency stability is poor, this is not 

good. So, you cannot use standalone, phase noise is poor, again you have to use in the PLL 

loop, easily integrated on chip and occupies small area, that is good part about the ring 

oscillator. So, these are three different kinds of oscillators. We will talk about the last two and 

because in many places we need oscillators with a wide tuning range, so, we will start with the 

ring oscillators to begin with.   

(Refer Slide Time: 15:50) 

 

So, let us come to this block which is VCO. So, I will just draw this and just give a thought to 

it. What should it do? So, you have VDD and ground, forget that you are controlling 𝑉𝑐, just 

assume that 𝑉𝑐 is equal to some fixed voltage. So, 𝑉𝑐 is fixed, for example, and you are getting 

𝑉𝑜𝑢𝑡 here and in practice what you want to see is this 𝑉𝑜𝑢𝑡 should be sine wave and it is self-

sustained. 

So, think about a system where you are not feeding any input, all the voltages are dc and it is 

producing sustained sinusoidal or square waves at the output which means that the system we 

are using should be self-sustainable which in turn means that even if there is some disturbance 

at the output of 𝑉𝑜𝑢𝑡, the system takes care of it and it still retains the frequency which it is 

designed for. 



So, to understand those systems which are self-sustainable even in the presence of disturbances, 

we have to understand closed loop feedback systems. So, it is like it is a closed loop system, I 

use the word closed loop because if you make any disturbance, it takes care of it.   

So, in general, let us draw a block diagram of a typical closed loop feedback system. You have 

a forward path with gain 𝐴(𝑠) and you have a feedback path with gain 𝛽(𝑠). This is the system 

and if it is in negative feedback, then I can put a minus sign here. Typically, in a closed loop 

system, this is 𝑉𝑖𝑛 and this is 𝑉𝑜𝑢𝑡.   

So, this system will become self-sustainable without any input under given conditions. So, 

what are those conditions? So, first we look at the loop gain of this system. Loop gain is the 

gain which you get as you break the loop and go around the loop. So, here, the loop gain is 

given by, 

𝐿𝐺 = 𝐴(𝑠)𝛽(𝑠) 

We have to keep in our mind that there is a negative sign in the feedback, this is important.   

So now, given this loop gain of the system, the above system becomes self-sustainable at, 

because we are writing in Laplace domain, so, we will talk about frequencies, at frequency 

𝜔 = 𝜔0, if  

|𝐿𝐺(𝑗𝜔0)| = 1 

∡𝐿𝐺(𝑗𝜔0) = 180° 

If this happens, then you will have sustained oscillations at the output of this system at 

𝜔0 without any external input to the system. So, you can think that this is like a small signal 

model of a closed loop system and that is what is going to replace your oscillator.   

So, let us understand why these two conditions are important. By the way, these two conditions 

for sustained oscillations are defined under Barkhausen’s criterion, this is the condition for 

sustained oscillations. So, let us take this example and try to understand that. So, just to begin 

with, think about it that in the beginning, you feed in a sine wave like this, only this sine wave, 

with respect to time, it has time period 𝑇 and 𝑇 =
2𝜋

𝜔0
. This is what you feed in, we will see that 

how we can think about that this kind of frequency will come on its own, but this is the sine 

wave you feed. 



So, initially all the voltages were 0. So, 𝑉𝑜𝑢𝑡 was 0, feedback was 0, everything was 0, and I 

feed this input. When I feed this input here, so, the input comes here, it will get amplified by 

the gain 𝐴(𝑡) and it will come here. 𝐴(𝑡) is going to add some kind of gain to it. So, in place 

of just having the same blue waveform, I am actually providing some phase shift and some 

amplification, that is what I am going to have at one particular frequency. So, at one particular 

frequency, there is going to be an amplification and phase shift. 

So, that will happen at output 𝐴(𝑠). Then what happens? You have 𝛽(𝑠) also and 𝛽(𝑠) is going 

to do a similar thing, it will actually amplify and add phase shift to it. So, the waveform here 

is shifted in phase and amplified. I deliberately do it like this, the reason is the following. So, 

let me do it with the same amplitude, so here, what I am trying to make sure is that if this 

amplitude is a, then this amplitude is also a. Here, it is 0 and then you see positive cycle first, 

here you are seeing negative cycle first. 

So, effectively, what I am trying to show you here is that this signal is just an inverted signal 

which you fed at the input which in turn is just telling you the same thing that if I feed this sine 

wave 𝑉𝑖𝑛, then from 𝑉𝑖𝑛 when I multiply 𝐴(𝑗𝜔0)𝛽(𝑗𝜔0), effectively what I get is −𝑉𝑖𝑛. That is 

what I am doing. If I get that −𝑉𝑖𝑛 and you have a negative sign sitting here, so, what happens 

is this negative will invert this signal and you are going to get the same signal here.   

So, now you think that you provided the sine wave to begin with as per our understanding and 

then the system itself is also feeding the sine wave. If the system itself is also feeding the sine 

wave of the same value, then you do not need to feed anything at the input and this sine wave 

will be sustained in the system on its own. You can ask a question that if I do not feed anything, 

where will the sine wave arise in the first place?   

Well, if this system is a model of some circuit block, there is going to be noise in the system. 

Noise exists at all the frequencies. At one particular frequency which is 𝜔0, you will satisfy 

this criterion for sustained oscillations and once you satisfy the criterion for one particular 

frequency, those oscillations will be sustained, all other input frequencies will die down. So, 

this is how our oscillator will be designed so that it becomes self-sustainable.   
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So, using this particular kind of negative feedback analysis, we will now go ahead and analyze 

one particular example. So, the example which I am going to choose is based on this loop gain 

and the angle of loop gain and Barkhausen criterion. So, let us do that, a simple example of a 

ring oscillator. Why do we call it a ring? You will see. 

So, I have a simple common source amplifier designed with the help of a MOSFET, R and C 

components. So, this is R, and this is C. If I call this as V1, the gain from V1 to V2 for the 

amplifier at a given operating point can be found out. So, let us say, you have this common 

source amplifier and it is biased with dc voltages.   

So, we can find the gain from the input to the output using the small signal model for this 

amplifier assuming that it is biased in saturation region, I can very well say, this is 𝑉1, this is 



𝑔𝑚𝑉1 and you have resistor 𝑅 in parallel with the 𝑟𝑑𝑠 of the transistor and whatever capacitor 

we have, that capacitor I am going to have at the output. Assume that the capacitor is effectively 

𝐶𝐿. So, this is the model. 

So, we have, 

𝑉2

𝑉1
= −

𝑔𝑚𝑅𝐿

1 + 𝑠𝐶𝐿𝑅𝐿
 

What is 𝑅𝐿? 𝑅𝐿 is given by, 

𝑅𝐿 = (𝑅||𝑟𝑑𝑠) 

So, this is the transfer function which you have, and this can be written as follows: 

𝑉2

𝑉1
=

−𝐴0

1 + 𝑠
𝜔𝑝⁄

 

where, 

𝐴0 = 𝑔𝑚𝑅𝐿 

𝜔𝑝 = 1
𝑅𝐿𝐶𝐿

⁄  

So, I have this single stage. Here, the gain which you are seeing is you are having -180° and 

one particular pole.    

If I go ahead and cascade these blocks, for example, like this. So, now I am going to connect 

all of them and form a ring like this and these are V1, V2 and V3. So, from V1 to V2, V2 to V3, 

and back to V1, it forms one single system like this. This is the block which we have. For this 

particular block, if you think about it, we are connecting the output of the last stage back to the 

first stage.   

So, I am going to model this using our small signal model. So, the gain from the very first stage 

to the last stage is given by, 

−𝐴0

1 + 𝑠
𝜔𝑝⁄

×
−𝐴0

1 + 𝑠
𝜔𝑝⁄

×
−𝐴0

1 + 𝑠
𝜔𝑝⁄

 



The output finally is fed back here like this and it is directly connected, there is no negative 

sign connected from the output of the last stage to the first stage. So, it is still in a positive sign, 

so we have to take this into account and there is no input to the system.   

Now, for this particular system, let me just draw it little nicely like this. We could have picked 

up at any particular point, but this is what we are looking at. So, here the loop gain of this 

system is given by, 

𝐿𝐺(𝑠) =
−𝐴0

3

(1 + 𝑠
𝜔𝑝⁄ )

3 

As per the Barkhausen criterion, the above system becomes self-sustainable at 𝜔 = 𝜔𝑜𝑠𝑐, let 

me write it, if 

|𝐿𝐺(𝑗𝜔𝑜𝑠𝑐)| = 1 

∡𝐿𝐺(𝑗𝜔𝑜𝑠𝑐) = 2𝑘𝜋 

Now, you would ask that why did I write 2𝑘𝜋 here whereas it was 180°. Well, when it was 

180° here, that time you had a minus sign here. So, 180° and this minus sign was giving you 

360°. Here, I do not have the minus sign, it is connected straight. So, I am writing 2𝑘𝜋 which 

is either 0° or 360° or -360° or so on. So, that is what we have.   

So, in order to do that, I will see whether I can have the frequency of oscillation or not. So, first 

I will write the ∡𝐿𝐺(𝑗𝜔𝑜𝑠𝑐), if this frequency exists. So, you look at the loop gain. So, for the 

loop gain, you get, 

∡𝐿𝐺(𝑗𝜔𝑜𝑠𝑐) = 180° − 3 tan−1 (
𝜔𝑜𝑠𝑐

𝜔𝑝
) 

Also, as per Barkhausen criterion for oscillations, if and only if, 

∡𝐿𝐺(𝑗𝜔𝑜𝑠𝑐) = 180° − 3 tan−1 (
𝜔𝑜𝑠𝑐

𝜔𝑝
) = 2𝑘𝜋 

Then this is going to be 𝑘 goes from 0 to ∞, it can take any value, then you will see that this is 

going to have oscillation. 

So, I will pick up 𝑘 = 0 which implies the following: 



180° − 3 tan−1 (
𝜔𝑜𝑠𝑐

𝜔𝑝
) = 0 

So, we have, 

𝜔𝑜𝑠𝑐 = 𝜔𝑝 tan(60°) 

𝜔𝑜𝑠𝑐 = √3 𝜔𝑝 

So, at the frequency √3 𝜔𝑝, it happens that the phase of the signal is 2𝑘𝜋. 
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Now, this is not the only condition. The other condition is that the loop gain should also be 

equal to 1. So, I have to find this. So, we have, 

|𝐿𝐺(𝑗𝜔𝑜𝑠𝑐)| = 1 

𝐴0
3

[√1 + (
𝜔𝑜𝑠𝑐

𝜔𝑝
)

2

]

3 = 1 

𝐴0
3 = (√1 + 3)

3
 

𝐴0 = 2 

So, if 𝐴0 = 2 and then you have 𝜔𝑜𝑠𝑐 = √3 𝜔𝑝, then you can get sustained oscillations for this 

particular example, and all the oscillators which are working on this negative feedback system 

are working on this principle only. Here, you have seen a common source amplifier, you can 

have any other amplifier, you can cascade and if you have the phase and the magnitude like 

this, you will see sustained oscillations.   

Now, it is not only this open loop system or this loop gain system which you have understood 

that you will have the sustained oscillations. It is also important to look at the closed loop 

systems for this example. So, given this example, what do you have here? This is, let us say, 

𝑉𝑖𝑛 and 𝑉𝑜𝑢𝑡. So, what we are going to look at is that if you have such kind of system, where 

do the poles of this closed loop system lie? The poles of this closed loop because when we 



make any closed loop system, it is stable if and only if all the poles are in the left half s-plane. 

If you have poles on the right half s-plane, the system is going to be unstable.   

So, what happens in the case of oscillator whether the poles are in the left half plane or right 

half plane or jω axis, we will confirm that. So here, if you look at the closed loop system, we 

need to find the poles or the roots of, let me write it, poles of above closed loop system will be 

given by, 

𝐷(𝑠) = 1 + 𝐿𝐺(𝑠) = 0 

These will be the poles.   

So, to find the poles here, so, look at this particular example here. So, what is the loop gain 

here? Loop gain is this and you are closing the loop in this particular manner. So, we have, 

1 −
(−1)3𝐴0

3

(1 + 𝑠
𝜔𝑝⁄ )

3 = 0 

So here, we find the poles of this closed loop. One important thing here is that in this particular 

case, you are actually closing the loop with a positive sign.   

So, to give you an idea, let us just look at this system in general. When you have 𝐴(𝑠) and here 

you use 𝛽 or this is positive and this is negative. In this particular case, what you see is the 

following, 𝐴(𝑠) and 𝛽(𝑠) in this case. So, this is 𝑋 and this is 𝑌, so, we have, 

𝑌

𝑋
=

𝐴(𝑠)

1 + 𝐴(𝑠)𝛽(𝑠)
 

If it happens, you can rewrite those equations, if in place of this negative sign, you have a 

positive sign here, then we have, 

𝑌

𝑋
=

𝐴(𝑠)

1 − 𝐴(𝑠)𝛽(𝑠)
 

So, looking at our oscillator, the way we are combining, it is going to be 1 −
(−1)3𝐴0

3

(1+𝑠
𝜔𝑝⁄ )

3 = 0. 

We need to find the poles for this. So, what we will get here is, 

(1 + 𝑠
𝜔𝑝⁄ )

3

= −𝐴0
3 = (−1)𝐴0

3 



So, for the closed loop poles, you have to take the cube root on both the sides. So, we get, 

1 + 𝑠
𝜔𝑝⁄ = (−1)1/3𝐴0 

Now, taking (−1)1/3 can be done with the help of complex numbers. So, I can write, 

𝑠
𝜔𝑝⁄ = −1 + (−1)1/3𝐴0 

𝑠
𝜔𝑝⁄ = −1 + [𝑒𝑗(2𝑘+1)𝜋]

1/3
𝐴0 

𝑠
𝜔𝑝⁄ = −1 + 𝑒𝑗(2𝑘+1)𝜋 3⁄ 𝐴0 

Here, for the roots, 𝑘 = 0, 1 and 2.   

So, what roots are we going to have? Let me just write it. I will substitute 𝑘 = 0. So, we have, 

𝑠0 = 𝜔𝑝(−1 + 𝑒𝑗𝜋 3⁄ 𝐴0) 

𝑠1 = 𝜔𝑝(−1 + 𝑒𝑗𝜋𝐴0) 

𝑠2 = 𝜔𝑝(−1 + 𝑒𝑗5𝜋 3⁄ 𝐴0) 

𝑠2 = 𝜔𝑝(−1 + 𝑒−𝑗𝜋 3⁄ 𝐴0) 

So, I will just expand this, so, we have, 

𝑠2 = 𝜔𝑝 {−1 + 𝐴0 (
1

2
− 𝑗

√3

2
)} 

𝑠1 = 𝜔𝑝(−1 − 𝐴0) 

𝑠0 = 𝜔𝑝 {−1 + 𝐴0 (
1

2
− 𝑗

√3

2
)} 
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So, the 3 poles which you are seeing in the closed loop which you will get, the 1st pole is equal 

to 𝑠 = (−1 − 𝐴0)𝜔𝑝, so, this pole is going to be in the left half plane. The other poles are 

𝜔𝑝 {−1 + 𝐴0 (
1

2
± 𝑗

√3

2
)}. 

So, for our sustained oscillations in this case, we found a couple of things that 𝐴0 = 2. If 𝐴0 =

2, then the roots of this closed loop system are given by, 

𝑠 = −3𝜔𝑝, 𝜔𝑝 {−1 + 2 (
1

2
± 𝑗

√3

2
)} 

𝑠 = −3𝜔𝑝, ±𝑗√3𝜔𝑝 



So, if you look at it, the locations of the poles are like you have one at −3𝜔𝑝 and the other two 

poles are on jω axis. This is Re(s), this is Im(s). So now, you can understand that if I choose 

𝐴0 = 2, then at frequency √3𝜔𝑝, what happens is you have poles on the jω axis and which will 

give you sustained oscillations. 

So, what we analyze with the help of the loop gain and the phase, the same thing is revealed 

by the closed loop analysis by the closed loop poles. If you have closed loop poles along the 

jω axis, then you will have sustained oscillations. Now, if I take this particular closed loop 

system and I disturb this system which we have, and I just observe in transient domain. In case 

1, 𝐴0 < 2, what you are going to see there may be oscillations but those oscillations will die 

down at 𝑉𝑜𝑢𝑡. 

If you take case 2, where 𝐴0 > 2, what you are going to see for the closed loop system, you 

can very well get it from here, if 𝐴0 > 2, then in that particular case, you are going to have 

closed loop poles in the right half plane, the oscillations will build up and then with the real 

limit of the supply voltages, it may saturate either to VDD or ground. 

Then in case 3 when 𝐴0 = 2, in that particular case, you will get sustained oscillations, 

whatever amplitude we are not talking about that, but the oscillations are going to be sustained. 

In all these cases, I am plotting 𝑉𝑜𝑢𝑡 versus t. So, you can say it is important at some time that 

you have 𝐴0 > 2 so that the oscillations can start but in sustained case there should be only 

𝐴0 = 2 to have sustained oscillations. 

This analysis which we have done here using a closed loop system and the loop gain forms the 

basis of all kinds of oscillators which we can analyze using their small signal model, no matter 

which circuit comes up having 3 in cascade, 5 in cascade, the way we have done in the ring, 5, 

7, whatever it is, we can calculate the frequency of oscillation and the gain required in this 

manner. Thank you. 

 


