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Hello, welcome to the session. We have been discussing the non-linearities in the charge-pump 

and one of the non-linearities in our modeling is that we completely forgot the effect of 

sampling in our charge-pump. So, let us see what it is. So, what we have is if you look at it, in 

our PFD based PLLs, we measure the phase error only once in reference frequency, isn’t it? 

So, we give these UP and DN pulses and you have charge-pump, so far so good, and this R C1 

C2, VCO and so on. 

So, the way we modelled our PFD plus charge-pump was that whenever you have phase error, 

you have 𝜑𝑅𝐸𝐹 and you have 𝜑𝑂𝑈𝑇, whenever you have phase error, the phase error between 

reference and output, it gets subtracted by the PFD and converted by the charge-pump and you 

get current which is proportional to phase error. That is how we modelled. But what happens 

is actually not this. What happens is when you have phase error between PFD and charge-

pump, the current comes at the output only once in a reference frequency. If the phase changes 

between the input and the output during the reference period, that particular phase error is going 

to be whatever phase error you accumulate, that phase error is going to be entertained by the 

PLL loop only during the next reference cycle. 



So, if I want to write, it is like PFD operates only on the rising edges of the clock. It does not 

operate in between, it operates like that. There is no feedback once you get the rising edge on 

the reference and the rising edge on the VCO, once you get this, this phase error is in, once this 

phase error is taken into account, after that even if the VCO frequency drifts or anything 

happens there, there is no feedback between two positive edges. 

So, if your V edge has changed here because of this you are changing then it is like until the 

next V edge comes you are not going to do anything, whatever happens to the VCO. Another 

thing is there is you can say one reference clock cycle delay. You change anything in the 

charge-pump, if there is any disturbance or anything in the charge-pump or PFD, if it happens 

during the current reference cycle or before the rising edge on the reference or the output clock, 

it will be taken into account otherwise if it happens after that, it is going to be taken into account 

only in the next reference clock cycle. 

So, there is like a one reference clock cycle delay. So, what we are doing in our modeling is 

the following. That what we are doing so far, we are actually sampling our system in the real 

PLL, if you look at it, it means I did approximations initially using z-domain transfer function, 

writing difference equations and so on but those were approximations. When you look at your 

actual PFD, what we are doing here is the following, we are having our reference phase and 

our output phase and output or divided phase, if there is a frequency divider and whatever value 

it gives. 

We are sampling this, effectively what we are doing is we are sampling in our system at 

reference rate. Our actual model is or you can say a model which is closer to our PLL operation 

is this, rather than this. This is not the exact model, a more accurate model is this one. You can 

get phase error, but I will sample the phase error only at the reference rate. So, when you have 

such kind of PLL in the system, so, let me just do it how we will analyze or can we still continue 

with our modeling which we have been using. 

So, let me just remove this and say a more accurate model for our PLL is the following where 

you can have the phase error between input and output or the reference and the output, it gets 

multiplied by your PFD gain 𝐾𝑃𝐷, it gets multiplied and you can have your charge-pump and 

this is actually a sampled version. 

So, you sample at reference rate by your reference clock, you get from your PFD you have the 

phase error then that particular whatever input and output phase error you have, 𝜑𝑂𝑈𝑇, by the 



way this is OUT here rather than VCO. You have phase error between reference and output, 

that particular phase error, your PFD gives a proportional value and that particular phase error 

is sampled and it is sampled at the reference rate. 

So, this is something which we have seen. We ignored it at that time, we approximated it but 

now it is the time to see how far our approximations were valid. So, what happens here is, in 

this particular case, 𝐼𝐶𝑃 changes only at fixed intervals and that is how you change your control 

voltage and so on. So, there are a couple of methods to analyze such kinds of systems. 

One of the methods is impulse invariance method to analyze such a PLL. There is an important 

conclusion after our discussion, so, let us look at it how we arrive at that conclusion, impulse 

invariance method. In this method, you can say, I want to find the loop gain of this system. 

This is like you have R and C, and you have a sampled value. 

So, what you will do is you will apply an impulse and you do all sampling and everything and 

you see what comes back in time domain. So, when you apply any change at the input and you 

see what comes back in time domain, that is effectively what you are doing here is you are 

looking at time-domain samples of the loop gain, and that is something which you are 

calculating using the exact operation. 

So, you calculate time-domain samples of loop gain. I will say that they are 𝐿𝐹(𝑡), and you 

pick up samples at regular intervals from this because when you are going to apply an impulse, 

you will have a real signal as a function of time. For example, just to tell you, if I have loop 

gain, this is just a 𝐿𝐹(𝑡) in my real system, what I am going to do is I am going to sample that 

at fixed rate which is 𝑇𝑅𝐸𝐹 because that is what is happening in the system. I am sampling my 

loop gain signal at fixed intervals t. 

So, pick samples for 𝐿𝐹(𝑡) at 𝑡 = 𝑛 𝑇𝑅𝐸𝐹. So, you get the samples for the loop gain at 𝑛 𝑇𝑅𝐸𝐹. 

Now, you have discrete loop gain samples at 𝑡 = 𝑛 𝑇𝑅𝐸𝐹. I can use these samples to calculate 

𝐿𝐺(𝑧). So, you calculate 𝐿𝐺(𝑧), so, this is going to be z-domain for the loop gain and then you 

analyze your closed loop system. 
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So, when I go ahead and do all such things, you will be surprised that the actual loop gain 

expression in our case making sure that the sampled values are from the actual system, the 

𝐿𝐺(𝑧) is going to be, 

𝐿𝐺(𝑧) =
𝐾 [𝑧2 (

𝐶1(1 − 𝑎)
𝐶1 + 𝐶2

+
2𝜋

𝑅𝐶1𝜔𝑅𝐸𝐹
) − 𝑧 (

𝐶1(1 − 𝑎)
𝐶1 + 𝐶2

+
2𝜋𝑎

𝑅𝐶1𝜔𝑅𝐸𝐹
)]

𝑧3 − 𝑧2(2 + 𝑎) + 𝑧(1 + 2𝑎) − 𝑎
 

Well, you can always refer to the papers which first published this. Here, we have, 

𝑎 = exp(−𝜔𝑝3𝑇𝑅𝐸𝐹) 

𝜔𝑝3 =
1

𝑅𝐶1𝐶2

𝐶1 + 𝐶2

 

𝐾 =
𝐾𝑉𝐶𝑂𝐼𝐶𝑃𝑅𝐶1

𝜔𝑅𝐸𝐹(𝐶1 + 𝐶2)
 

So, while using the sampled values of the PLL and finding the loop gain from there, the loop 

gain happens to be like this. 

Earlier, we were approximating this loop gain as follows: 

𝐿𝐺(𝑧) ≈
𝐼𝐶𝑃

2𝜋

𝐾𝑉𝐶𝑂

𝑠2(𝐶1 + 𝐶2)

(1 + 𝑠
𝜔𝑧⁄ )

(1 + 𝑠
𝜔𝑝3⁄ )

 



This is what we were using but the actual expression is this. Now, you can very well find the 

bandwidth while using this transfer function. What you are going to see is the following. First, 

if 
𝜔𝑅𝐸𝐹

𝜔𝑢
≥ 10, then our Laplace-domain or continuous time Laplace-domain or continuous time 

analysis holds to a good approximation and we have verified this by getting the actual plot or 

the response comparing the Laplace-domain response with the discrete time modeling. 

As 
𝜔𝑅𝐸𝐹

𝜔𝑢
 reduces which can only happen when 𝜔𝑢 increases in comparison to 𝜔𝑅𝐸𝐹, when 

𝜔𝑅𝐸𝐹

𝜔𝑢
 reduces and approaches values ≤3.5, these are the calculations which you will see, you 

will find that the system starts becoming unstable and what happens is that you will start seeing 

the closed loop poles in the z-domain analysis going outside the unity gain circle which is the 

condition for instability. 

So, as you see the condition for instability in case of Laplace-domain analysis is that you have 

poles in the right half plane. Similarly, in z-domain analysis, if the poles are outside the unity 

gain circle, then the system will be unstable. So, as this ratio of 
𝜔𝑅𝐸𝐹

𝜔𝑢
 reduces, then what you 

will have is that your closed loop poles start going outside the unity gain circle and you will 

lose on the stability. 

So, as a rule of thumb now, I will not say that if your unity gain frequency exceeds 𝜔𝑅𝐸𝐹, then 

your PLL will become unstable, no that is not the case. In many implementations we can 

implement 𝜔𝑢 >
𝜔𝑅𝐸𝐹

10
. We have implemented 

𝜔𝑅𝐸𝐹

8
 and even higher, but the thing is the 

matching between this transfer function and our discrete time transfer function will not be there 

anymore. 

So, if you are implementing your PLL with 𝜔𝑢 ≤
𝜔𝑅𝐸𝐹

10
, you can very well be assured that your 

continuous time analysis or Laplace-domain analysis is quite accurate to model this sampled 

system. If 𝜔𝑢 >
𝜔𝑅𝐸𝐹

10
, accurate modeling requires z-domain analysis. Please do not use 

Laplace-domain analysis or the continuous time analysis which we have done. 

If 𝜔𝑢 ≫
𝜔𝑅𝐸𝐹

10
 or it approaches you can say even 

𝜔𝑅𝐸𝐹

2
 or something, the PLL will become 

unstable. PLL shows instability because your closed loop poles go beyond the unity gain circle. 

So, keeping this in mind, we will design our PLLs. Thank you. 


