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Hello everyone. Welcome to this session. We were looking at charge-pump PLL with Type-II and 

Order 3 in the PLL loop. So, let me draw the small signal block diagram of the PLL which we 

were discussing in the previous session. So, we had this phase error detector PFD whose gain was 

1

2𝜋
 that goes to a charge-pump with UP and DN signals.  

The gain for the charge-pump combined with PFD was 
𝐼𝐶𝑃

2𝜋
 and that goes to a loop filter which has 

R and C1 and a ripple bypass capacitor C2. In the previous session, we saw the need of the ripple 

bypass capacitor. The control voltage actually changes the frequency of the oscillator with a gain 

of 
𝐾𝑉𝐶𝑂

𝑠
 for the phase. This is the small signal block diagram of the PLL. 

Here you have the input or the reference phase, this is your output phase, the phase error can be 

seen here as 𝜑𝐸𝑅, the output of the charge-pump is 𝑖𝑐𝑝 and this node voltage is 𝑉𝐶𝑇𝑅𝐿. The loop 

gain of this PLL has been the following: 



𝐿𝐺(𝑠) =
𝐼𝐶𝑃
2𝜋

(1 + 𝑠𝑅𝐶1)

(1 +
𝑠𝑅𝐶1𝐶2
𝐶1 + 𝐶2

)

𝐾𝑉𝐶𝑂
𝑠2(𝐶1 + 𝐶2)

 

So, for the given loop gain, earlier we found that we need to worry about the phase margin for this 

and I wrote angle of loop gain as, 

∡𝐿𝐺 = −180° + tan−1 (
𝜔

𝜔𝑧
) − tan−1 (

𝜔

𝜔𝑝3
) 

𝜔𝑝3 =
1

𝑅𝐶1𝐶2
𝐶1 + 𝐶2

 

I will just rewrite that again and phase margin is given by, 

𝜑𝑚 = tan
−1 (

𝜔𝑢
𝜔𝑧
) − tan−1 (

𝜔𝑢
𝜔𝑝3

) 

So, the magnitude of the loop gain in dB with respect to 𝜔 happens to be like this. At zero 

frequency, it changes and then at unity gain frequency and this particular frequency is 𝜔𝑝3, let me 

just extend this line. So, this is 𝜔, this frequency is 𝜔𝑢 and this frequency is 𝜔𝑝3, this is 𝜔𝑧.   

With respect to this plot, the phase plot happens to be like this. So, this is going to be -180°, -135°, 

-90° and -45°. The phase plot will be like this, and then it will again become -135°. In this case, 

the phase margin happens to be this. I showed the other plot also where let us say 𝜔𝑝3 location is 

something like this. So, you will have a pole 𝜔𝑝3, let us call this as 𝜔𝑝3′, you have new 𝜔𝑢′ and 

based on your 𝜔𝑝3, you can have something with the 𝜔𝑝3, it may not actually increase that far and 

it will again come back and this will go to -180°. So, the phase margin in the second case is only 

this much. 

So, the question is now, which of these two plots or how would you like to have the position of 

𝜔𝑝3 and 𝜔𝑧 such that you get the phase margin which you desire, and which of these plots is a 

better phase plot to use for your design. When I say better, it refers to which is the most optimum 

design. 

 



Now, you take two cases. One case is where the phase plot is actually peaking near the 𝜔𝑢 

frequency and let us say this is the phase margin which you want, then if you think about it, the 

variation in 𝜔𝑢 around this frequency 𝜔𝑢 given, due to some parameters in the design, the change 

in the phase margin around this point is actually very less. 

On the other hand, if this is the phase margin which you desire, whether it is low or high, that is 

another case, but if this is the phase margin which you desire, then a slight change in your unity 

gain frequency because of your change in a pole frequency, zero frequency based on your RC and 

other parameters, the variation in the phase margin will be a lot more. 

So, what we need is actually we need a design where we need to design this particular PLL in such 

a way that the change in the phase margin at the unity gain frequency is much less if you change 

the unity gain frequency by some amount. So, this appears to be one of the ideal choices. So, 

whatever unity gain frequency you want, based on the unity gain frequency, you should place your 

poles p3 and your zero in such a way that you get your phase plot variation around that unity gain 

frequency to be very low. So, we can do that in a systematic manner. Let us just look at it. 
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So, before I just write that phase margin, let me just write those 𝜔𝑧 and 𝜔𝑝3 also though you know 

it. So, they are given by, 

𝜔𝑧 =
1

𝑅𝐶1
 

𝜔𝑝3 =
1

𝑅𝐶1𝐶2
𝐶1 + 𝐶2

 

So, if I make my phase margin to be maximally flat near the unity gain frequency, then the variation 

in the phase margin with respect to the unity gain frequency will be much lesser around unity gain 

frequency. 

So, what I am going to do is, I am going to take the derivative of the phase margin with respect to 

unity gain frequency and make this derivative to go to zero. If you do this, we will get, 

𝜑𝑚 = tan
−1 (

𝜔𝑢
𝜔𝑧
) − tan−1 (

𝜔𝑢
𝜔𝑝3

) 

𝑑𝜑𝑚
𝑑𝜔𝑢

= 0 



⟹
1

1 + (
𝜔𝑢
𝜔𝑧
)
2 ×

1

𝜔𝑧
−

1

1 + (
𝜔𝑢
𝜔𝑝3

)
2 ×

1

𝜔𝑝3
= 0 

You solve all these terms, what you are going to get is, 

⟹𝜔𝑢
2 = 𝜔𝑧 . 𝜔𝑝3 

It is like here your unity gain frequency is a geometric mean of your zero and the pole frequency. 

Now, let us look at it. What does it reflect? That you have 𝜔𝑧 =
1

𝑅𝐶1
, I can also write this 𝜔𝑝3 as 

given below. 

𝜔𝑝3 = 𝜔𝑧 (
𝐶1
𝐶2
+ 1) 

So, we get, 

𝜔𝑢
2 = 𝜔𝑧

2 (1 +
𝐶1
𝐶2
) 

⟹𝜔𝑢 = 𝜔𝑧√1 +
𝐶1
𝐶2

 

So, you got the relationship between 𝜔𝑢 and 𝜔𝑧 in terms of the capacitor ratio 
𝐶1

𝐶2
. 

So, I am going to substitute this back in the first equation to find our phase margin which is given 

as, 

𝜑𝑚 = tan
−1(√1 +

𝐶1
𝐶2
) − tan−1

(

 
1

√1 +
𝐶1
𝐶2)

  

So, what you see here is that your phase margin is just a function of the two capacitors which you 

are choosing. 



So, in that way, I can just take tan on both the sides and you will solve that equation which turns 

out to be, 

𝐶1
𝐶2
= 2(tan2 𝜑𝑚 + tan𝜑𝑚√1 + tan2𝜑𝑚) 

I will call this capacitor constant as 𝐾𝑐. So, we have, 

𝐾𝑐 =
𝐶1
𝐶2
= 2(tan2 𝜑𝑚 + tan𝜑𝑚 √1 + tan2 𝜑𝑚) 

So, given the phase margin, you can find the ratio 
𝐶1

𝐶2
. Once you know the ratio 

𝐶1

𝐶2
, you can find the 

other parameters also. Let us look at the design procedure using our phase margin analysis. 

So, first, you need to know the bandwidth and the phase margin of the PLL. So, given 𝜔𝑢 and 

phase margin, how do we know what is 𝜔𝑢 and what is phase margin? That you are going to see 

later. There will be some other parameters, system level design requirements where you will get 

the unity gain bandwidth and your phase margin. 

So, given 𝜔𝑢 and phase margin, because you know phase margin, so, you can find out 𝐾𝑐 =
𝐶1

𝐶2
=

2(tan2 𝜑𝑚 + tan𝜑𝑚√1 + tan2𝜑𝑚). Once you know 𝐾𝑐 and you know 𝜔𝑢 and because phase 

margin will give you 
𝐶1

𝐶2
. So, you can find out that 𝜔𝑧 =

𝜔𝑢

√1+
𝐶1
𝐶2

.  

When you know 𝜔𝑧, you need to choose R, this is a choice which will be dictated by the noise in 

the system but you need to choose R. Then once you know R, 𝐶1 =
1

𝜔𝑧𝑅
, and 𝐶2 =

𝐶1

𝐾𝑐
. So, now see 

you made a choice over R, you know now your C1 and C2. Once you know your C1 and C2, using 

the fact that the |LG|=1, you can find 𝐼𝐶𝑃 as, 

𝐼𝐶𝑃 =
2𝜋(𝐶2 + 𝐶1)

𝐾𝑉𝐶𝑂
𝜔𝑢
2√
1 +

𝜔𝑢2

𝜔𝑝3
2⁄

1 +
𝜔𝑢2

𝜔𝑧2
⁄

 

Here, you need to know 𝐾𝑉𝐶𝑂. 



So, you can find 𝐼𝐶𝑃. So, you look at it, given 𝜔𝑢 and phase margin, you found 
𝐶1

𝐶2
, then 𝜔𝑧, then 

you chose R, you could find C1 and C2 and you can find 𝐼𝐶𝑃. If all the parameters are chosen in 

such a way, then you will place your 𝜔𝑧 and 𝜔𝑝3 in such a way that whatever phase margin you 

want, your phase margin plot will always be having the derivative of the phase at the desired point 

to be equal to zero. Thank you. 

 


