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Lecture ‒ 27 

Problems in Charge Pump PLL ‒ Reference Spur 

So, we were looking at the problems in the charge-pump PLL which we have introduced just a few 

sessions back. So, let us look at another problem in the charge-pump. And another problem in the 

charge-pump is associated with the charge-pump and loop filter action together. 
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So, let me just redraw the charge-pump plus loop filter. So, you have this 𝐼𝐶𝑃 followed by the loop 

filter response. So, this is UP and DN, let us not worry about UP and DN now, 𝐼𝐶𝑃 and this is 𝑖𝑐𝑝 

going in the system. Now, what happens is we have seen this multiple times that let us say the UP 

and DN pulses are such that you have some kind of phase error. 

So, I am going to draw the UP pulse like this. It is periodic in nature, you can think about it and 

this is UP, and DN will also be a similar square pulse with a lesser width. Whether UP is larger or 

DN is larger, that depends on the phase error. So, in response to these UP and DN pulses, these 

UP and DN pulses, you have 𝑖𝑐𝑝, small 𝑖𝑐𝑝, the current which flows through the loop filter is shown 

here. 

Now, when this particular 𝑖𝑐𝑝 current is pumped into the loop filter, earlier we drew the control 

voltage, this voltage is by the way control voltage. The control voltage happens to be like this, a 

jump, integration and jump like this and then comes back. If you think about it, what I am trying 

to do is, suddenly, you can think that suddenly you have 𝑖𝑐𝑝 current flowing through a resistor and 

capacitor. So, whatever value of the voltage, if this particular voltage before this rising edge may 

not be equal to zero, it will be some voltage. So, as soon as you start pumping the current 𝑖𝑐𝑝, the 

capacitor voltage cannot change instantaneously. So, what you see here is a jump in the voltage 

and this jump is equal to 𝐼𝐶𝑃𝑅, the jump here is 𝐼𝐶𝑃𝑅 and then the current keeps on integrating over 

the capacitor, and the voltage keeps on increasing linearly. 

So, if I call this as 𝑉𝐶, 𝑉𝐶  is initially 0 and then it keeps on increasing. So, 𝑉𝐶 and 𝑉𝑅, the voltage 

across the capacitor and resistor respectively can be drawn here. So, I will say that there is a voltage 

like this. So, you have a voltage like this. This is 𝑉𝑅 voltage across the resistor and voltage across 

the capacitor is something like this. The voltage across the capacitor changes slowly, and 𝑉𝑐𝑡𝑟𝑙 =

𝑉𝑅 + 𝑉𝐶. 

So, what is the problem with this? Well, the problem is that the control voltage which is connected 

to the oscillator is changing every reference frequency and for multiple reasons. You have this 

oscillator here, this is your control voltage. So, the control voltage of the oscillator changes every 

reference frequency for multiple reasons whether you have phase error, some problems in the 

charge-pump and other things, those things will happen. 



So, because of this change in the control voltage at the reference frequency, you modulate the 

frequency of the oscillator with 𝑉𝑅 like pulse waveform. So, I will say 𝑉𝑅 modulates oscillator 

frequency every reference clock period, this is my reference clock period. 

Now, well, the waveform which you are seeing is more or less square waveform or square 

waveform with duty cycle and this is whatever ∆𝑡 error you are going to have in steady state, it 

depends, the pulse width depends on that. So, this 𝑉𝑅 can be written in terms of the Fourier series 

as follows: 

𝑉𝑅 = ∑ 𝑎𝑛 cos(𝑛𝜔𝑅𝑡) + 𝑏𝑛 sin(𝑛𝜔𝑅𝑡) 

where, 𝜔𝑅 =
2𝜋

𝑇
 is the reference frequency in rad/sec. 

So, now you can write the Fourier series for this 𝑉𝑅 waveform, it is modulating your oscillator’s 

frequency and if you pick up even the first one, where 𝑛=1, then you see that you are modulating 

oscillator’s voltage at 𝜔𝑅 which is finally leading to 𝜔𝑜𝑢𝑡 ± 𝜔𝑅. These components will come and 

the components at 𝜔𝑜𝑢𝑡 ± 𝜔𝑅 are normally termed as reference spurs. 

So, if you look at the spectrum of the oscillator in a given PLL, you will find that you have 𝜔𝑜𝑢𝑡 

and you have other components also and one of the dominant components is 𝜔𝑜𝑢𝑡 + 𝜔𝑅, another 

is 𝜔𝑜𝑢𝑡 − 𝜔𝑅. So, the problem of reference spur exists because there is an instant change in the 

control voltage of the oscillator. It is more prominent and it is not only that you are going to have 

𝜔𝑜𝑢𝑡 ± 𝜔𝑅, depending on your output frequency, you are going to see other higher order 

harmonics also such as ±2𝜔𝑅 and so on.   

So now, we realize that this is the problem because of this control voltage variation which we also 

term as control voltage ripple. It is a ripple at the control voltage. Because of the control voltage 

ripple, we modulate the output frequency of the oscillator and we have unwanted components in 

the form of reference spurs. If we know the problem, then it is really good, we can find a solution. 

So now, what we need to do is this. We cannot avoid the phase error information coming from the 

PFD plus charge-pump every reference frequency, that is not avoidable. So, what we need to do is 

the following. Let us say that I am going to get this current 𝑖𝑐𝑝 coming from the charge-pump in 

the loop filter. 



And if I have this loop filter, I know that what will happen is there will be a jump. So, if I do not 

want that this should have a jump, what I can do is I can provide another low impedance path to 

the 𝑖𝑐𝑝 current which is coming at every reference frequency. So, that low impedance path can be 

provided by a capacitor with value C2. 

So, just for hand-waving analysis, let me put it that way, I have 𝑖𝑐𝑝, it sees two paths, one with C2 

and other with R C1. If I make sure that the impedance provided by C2 at 𝜔𝑅 frequency or your 

reference frequency is much smaller than the impedance provided by R and C1, then it will help in 

reducing the ripple on the control voltage. So, we have, 

|
1

𝑗𝜔𝑅𝐶2
| ≪ |𝑅 +

1

𝑗𝜔𝑅𝐶1
| 

|
1

𝐶2
| ≪ |

1 + 𝑗𝜔𝑅𝐶1𝑅

𝐶1
| 

𝐶2 ≫
𝐶1

|1 + 𝑗𝜔𝑅𝐶1𝑅|
 

where, 𝜔𝑅 refers to the reference frequency. 

So, if you look at it, I need to provide, just from this, earlier we have seen that we chose C1 and R 

such that we had proper phase margin and other things. Now, I have to choose C2 which is larger 

than some particular component value and depending on the C2 capacitor, I can bypass the ripple 

voltage. So, this C2 is often termed as ripple bypass capacitor because we introduce it as a ripple 

suppressant.   

Now, if we have C2 as a ripple bypass capacitor, this analysis is just a hand-waving that the 

impedance provided by the two, but the combined impedance here of R C1 plus C2 actually 

introduces another pole in the loop filter which increases the order of the PLL and it questions the 

stability of the PLL. 
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So now, let us just redraw our PLL with the ripple bypass capacitor. So, the charge-pump, another 

set of switches controlling here and then this goes through a loop filter using R C1 and then C2, R 

C1 which goes to the VCO. So, what you see here is that we when we try to solve the problem, if 

we create another problem. We have to check that how much problem we solved and how much 

problem we created. 

So here, we have the reference voltage, this is our OUT, this comes 𝑖𝑐𝑝 and this is the control 

voltage. The small signal model of this PLL, this again a simple one that you have the phase error 

multiplied by, I will write it as 
𝐼𝐶𝑃

2𝜋
 going into the loop filter with C1 and C2 which gets multiplied 



by 
𝐾𝑉𝐶𝑂

𝑠
, this is +, this is -, this is 𝑖𝑐𝑝, this is 𝑉𝑐𝑡𝑟𝑙(𝑠), so, 𝜑𝑅𝐸𝐹 and 𝜑𝑂𝑈𝑇. Look at the loop gain 

now. 

So, loop gain for this particular PLL is given by, 

𝐿𝐺(𝑠) =
𝐼𝐶𝑃

2𝜋

(1 + 𝑠𝑅𝐶1)

(1 +
𝑠𝑅𝐶1𝐶2

𝐶1 + 𝐶2
)

×
𝐾𝑉𝐶𝑂

𝑠2(𝐶1 + 𝐶2)
 

So now, with this new loop gain, we will see whether this loop is stable or not. So, here you have 

two poles, at 𝜔𝑝1 = 𝜔𝑝2 = 0, and you have the third pole at 𝜔𝑝3 =
1

𝑅𝐶1𝐶2
𝐶1+𝐶2

. By the way, you must 

be used to writing these poles whether it is a left half plane pole or right half plane pole. Here when 

I am writing 𝜔𝑝3, I am saying it is a pole but it is just the frequency part 𝜔𝑝3. Poles are 𝑠1 = 0, 

𝑠2 = 0 and 𝑠3 = −𝜔𝑝3. 

So, I want to avoid any confusion here. 𝜔𝑝3 =
1

𝑅𝐶1𝐶2
𝐶1+𝐶2

 is not our pole. Now, zero in Laplace domain 

is actually at −
1

𝑅𝐶1
 and the zero frequency which I use in the expression is 𝜔𝑧 =

1

𝑅𝐶1
. So, the loop 

gain expression can be rewritten as given below. 

𝐿𝐺(𝑠) =
𝐼𝐶𝑃𝐾𝑉𝐶𝑂

2𝜋𝑠2(𝐶1 + 𝐶2)

(1 + 𝑠
𝜔𝑧⁄ )

(1 + 𝑠
𝜔𝑝3⁄ )

 

The angle of this loop gain at any given frequency is given by, 

∡𝐿𝐺(𝑗𝜔) = −180° + tan−1(𝜔
𝜔𝑧⁄ ) − tan−1 (𝜔

𝜔𝑝3⁄ ) 

So, let us see whether our system is stable or not. First I am going to plot the loop gain with respect 

to 𝜔, so, this is |𝐿𝐺| in dB. What you see is that you are having two poles at 0, so, you will have -

40 dB/dec, then you have a zero. So, it will be like this. Then depending on the position of our 

𝜔𝑝3, I am going to have the second pole. This is one option which you see that 𝜔𝑝3 is coming after 

𝜔𝑢. Looking at these things you can very well say 𝜔𝑝3 is surely going to be larger than 𝜔𝑧 because 

𝐶1𝐶2

𝐶1+𝐶2
< 𝐶1, but whether 𝜔𝑝3 is going to be greater than 𝜔𝑢 or less than 𝜔𝑢, that we do not know. 



So, if we have such a kind of loop gain, then the corresponding phase plot is going to be like this. 

So, at 𝜔𝑢, you will have, so, I will just take another line here. So, this is -180°, -135°, -90°, -45°. 

So, it starts with -180°, it has a zero, so, it goes to -135°. If 𝜔𝑝3 comes much later, then it may 

reach close to -90° and when it comes 𝜔𝑝3 it may again go to -135° and then finally what you see 

here is that 𝜔𝑝3 is a pole. So, at maximum this can introduce 90°, this can introduce 90° which 

cancels out. So, as frequency tends to infinity, you may go to -180°. So here, the phase margin 

which you may calculate appears to be this. 

Now, in place of the 𝜔𝑝3 location which we have seen, if it happens that 𝜔𝑝3 comes here because 

you increase C2, so, 𝜔𝑝3 can change its location. If 𝜔𝑝3 comes here, then what you see is that you 

will surely have -135° and then you have another pole. So, before it reaches what you can say is 

your frequency comes, it does not reach -90°. 

So, what you may see is that the phase is actually much lesser. It is not going to be -135°, it will 

be slightly larger than may be -135° and then it will finally go like this. So, these are the two cases 

which I have seen and if you now want to calculate the phase margin, it is going to be only this 

much. So, this I will write this as 𝜔𝑝3′. So, we have, 

𝜔𝑝3
′ < 𝜔𝑝3 

𝐶2
′ > 𝐶2 

𝐶2
′  is the capacitor which you are using for 𝜔𝑝3

′  and it appears that the phase margin is reduced. 

So now, as we introduced another pole in the system, what we found is that yes you can reduce 

the control voltage ripple but you make your PLL more susceptible to instability. Well, we will 

not have a PLL which is unstable. So, we will try to make it stable with the desired phase margin. 

But if you do not pay attention, if you just use C2 with a very large value, then what you will see 

as phase margin is not there, zero and pole cancel out, and with no phase margin, you will have an 

unstable PLL. So, we need to look at how we are going to choose this phase margin and how we 

place 𝜔𝑝3 in our system. Thank you. 

 


