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Welcome to this session everyone. In the previous session, we looked at the block diagram of a 

charge-pump PLL and we also drew the small signal model of the charge-pump PLL. So, today in 

this session, we will look at the analysis of the charge-pump PLL. So, our PLL included a phase 

frequency detector followed by a charge-pump. The charge-pump was realized using switches and 

current sources. So, we had two current sources, up and down. So, this was connected to VDD, 

this is ground as you see. These are UP and DN signals which actually open or close the switch. 

The output of the charge-pump here is the current 𝐼𝐶𝑃 in caps and you have a loop filter R and C1. 

This loop filter output is connected to the oscillator in this manner. 

So here, this is your reference signal. I will write this as reference and this is your output signal. 

The current which comes out of the charge-pump, I will write that as small 𝑖𝑐𝑝, see, capital 𝐼𝐶𝑃 is 

the current in the charge-pump and depending on which switch is open, what current is flowing, 

that I am specifying with 𝑖𝑐𝑝. This node voltage is control voltage. 
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Now, in this actual circuit, if we look at the reference and the output pulses at any given instant of 

time, you may have some phase error at any given time, so, these are reference and output. So, 

deliberately I am showing you what happens when you have some small phase error. At that 

particular instant of time, for the other one let me just draw the negative phase error for example, 

like this. 

So, in response to this reference and OUT pulse, you will have UP and DN pulses going like this, 

this will be your UP pulse, and corresponding DN pulse, it will actually remain 0, ideally, and the 

DN pulse goes high when you get a rising edge on the OUT pulse before the UP pulse. So here, I 

am just giving you one example where the OUT pulse goes high before, so the OUT pulse goes 

high and then when you have a rising edge on reference, the OUT pulse goes down. 

So, effectively your reference is triggering this, your output is triggering this, similarly here. So, 

these are your reference and OUT pulses. In response to these reference and OUT pulses, we have 

𝑖𝑐𝑝, this current should be equal to our 𝐼𝐶𝑃 current. 

So, when the UP pulse goes high, you actually close the switch and 𝑖𝑐𝑝 flows here. So, you have 

𝑖𝑐𝑝 current flowing in the given direction, the current value is capital 𝐼𝐶𝑃, it flows for this much 

amount of time. And then when DN pulse goes high, the UP pulse goes low, so the switch is open 

again. DN pulse goes high, this switch gets closed, the current 𝑖𝑐𝑝 flows in this direction. So, giving 



the direction, we define the direction by the sign, your 𝑖𝑐𝑝 current is like this, this value is you can 

say −𝐼𝐶𝑃. This is how the current flows. 

Now, in response to this current, you are going to have a change in the voltage, a control voltage 

change and this control voltage 𝑉𝑐𝑡𝑟𝑙 happens to be you will take a jump 𝐼𝐶𝑃𝑅, it will integrate and 

it will come back to 𝐼𝐶𝑃 and then it will remain constant. When you get a negative pulse, then what 

you will do is you will take a negative jump of 𝐼𝐶𝑃, it will integrate in the opposite direction and 

your control voltage will become like this. So, this is what is happening to your control voltage. 

Now, based on the control voltage, your frequency will change and the phase will change and the 

PLL is going to lock. 
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Now, for this particular charge-pump PLL, we drew the small signal diagram and small signal 

diagram was shown like this. You have 𝜑𝑅𝐸𝐹, and you detect the phase error. So, effectively you 

are subtracting the output phase from the reference phase, and you get the phase error. The phase 

error output, you have a PFD. So, PFD plus charge-pump combined gain is equal to 
𝐼𝐶𝑃

2𝜋
, if you 

want to write it separately, we can write it as 
1

2𝜋
 for phase error detector gain in steady state and 

this is 𝐼𝐶𝑃. 



So here, you can still say this is V phase error detector, 𝑉𝑃𝐷, in our case PFD and this is the charge-

pump current. So, this current goes through the loop filter as shown here, R and 
1

𝑠𝐶1
. 

1

𝑠𝐶1
 is the 

impedance of the capacitor and then it has a VCO whose response from control voltage to output 

phase is 
𝐾𝑉𝐶𝑂

𝑠
. So, this is the small signal model of the charge-pump, this is 𝜑𝑜𝑢𝑡.  
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So, in the previous session, we approximated the combined gain of the PFD plus charge-pump as 

equal to 
𝐼𝐶𝑃

2𝜋
. So, that was an approximation actually, if I look at the actual operation and our 

modeling, there is some difference and we will tell that this difference is actually negligible in 

many cases. First, you can say, approximation here is what we are considering is with respect to 

the phase error. So, this corresponds to the ∆𝑡 error or phase error, whatever you call it. So, the 

phase error gets multiplied by 
𝐼𝐶𝑃

2𝜋
 and that current is there. 
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So, the average current 𝑖𝑐𝑝, average current if we would like to write based on the phase error 

which we have, this is an approximation which we are using by the way. So, this current is like 

this, this is an approximation. What is the value of this current? The value of this current is as 

follows: 

𝐼𝐶𝑃

2𝜋
× 𝜑𝑒𝑟 =

𝐼𝐶𝑃

2𝜋
× 2𝜋.

∆𝑡

𝑇
 

So, these things cancel out, if you look at it, the average of the total charge which I am going to 

add here is, that is the area under this curve, this area under this curve is equal to 𝐼𝐶𝑃. ∆𝑡 which 

corresponds to the phase error. Here also, this is this value 𝐼𝐶𝑃
∆𝑡

𝑇
. If you integrate it over time 

period 𝑇 which is the reference clock period, you will get the same value. 

So, our modeling is slightly different from our actual operation and under the assumptions that our 

frequency of operation or the frequency at which the changes are happening in the system, that 

frequency is much lesser than the frequency at which we are clocking this system. So, well, under 

those assumptions, you can approximate your charge-pump current like this. We will see later that 

when the bandwidth of this whole loop is much higher or it becomes closer to reference frequency, 

then our assumptions will not be valid. 



So, for now, assume that the assumptions which we have made, those assumptions are valid and 

the relationship between the actual operation and the operation in our small signal model is as 

shown. Let me just remove 𝑉𝑐𝑡𝑟𝑙 from here because now with respect to this 𝑖𝑐𝑝, 𝑉𝑐𝑡𝑟𝑙 will change. 

So, with respect to this small signal model, the thing which we need to understand is that whether 

this model is stable or not, and what are the gains from different nodes to the output. 
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So, for the small signal analysis of charge-pump PLL, our loop gain which is defined as the gain 

around the loop, that is this loop we are talking about. The loop gain of this system is given by, 

𝐿𝐺(𝑠) =
𝐼𝐶𝑃

2𝜋
(𝑅 +

1

𝑠𝐶1
)

𝐾𝑉𝐶𝑂

𝑠
=

𝐼𝐶𝑃 𝐾𝑉𝐶𝑂

2𝜋𝑠2𝐶1

(1 + 𝑠𝑅𝐶1) 

So, this is our loop gain. There are two poles, so, 𝜔𝑝1 = 𝜔𝑝2 = 0, the two poles are at 0, and the 

zero for this transfer function is at 𝜔𝑧 =
1

𝑅𝐶1
. The angle of the loop gain is given by, 

∡𝐿𝐺(𝑗𝜔) = −180° + tan−1 (
𝜔

𝜔𝑧
) = −180° + tan−1(𝜔𝑅𝐶1) 

Now, just to plot this particular loop gain with the help of Bode plot, we have |𝐿𝐺| versus 𝜔. I will 

plot this in dB 20. So, you have -40 dB/dec starting from zero frequency, and then you will have 

a zero, and based on the zero, you will have this is going to be -20 dB/dec. This frequency is zero 



frequency. The frequency at which you cross the unity gain or 0 dB line, that frequency is unity 

gain frequency. 

Corresponding to this magnitude plot for the loop gain, you have the phase plot, angle of loop gain, 

∡𝐿𝐺, the starting phase happens to be −180°. So, I will just plot this. So, there are two frequencies 

which are important right now, one is the zero frequency, so, you start from −180°, so this, this I 

make as 90°. When you come to the zero frequency, you are going to add a phase of 45°, so, it 

will become −135° and then from −135°, it is going to, at infinity, this frequency is going to be 

−90°, it will not cross −90°. 

(Refer Slide Time: 16:26) 

 

So, to check the stability of this particular loop, what we need to see is, what is the phase margin. 

The difference between −180° and the actual phase at unity gain frequency. So, the phase margin 

is given by, 

𝜑𝑚 = −180° − (∡𝐿𝐺(𝑗𝜔𝑢)) 

𝜑𝑚 = tan−1 (
𝜔𝑢

𝜔𝑧
) = tan−1(𝜔𝑢. 𝑅𝐶1) 
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Now, how do we know what is 𝜔𝑢? Well, to find 𝜔𝑢, you can very well find 𝜔𝑢 such that the 

magnitude of loop gain is equal to 1. So, we have, 

|𝐿𝐺(𝑗𝜔𝑢)| = 1 

You substitute it back, you will find what is 𝜔𝑢, or the other way is an approximate way. So, you 

can do an approximation, quite often it works. The approximation is given by, 

𝐼𝐶𝑃𝐾𝑉𝐶𝑂

2𝜋𝜔𝑢
2𝐶1

× 𝜔𝑢𝑅𝐶1 = 1 

This is an approximation. So, what I am saying here is that 1 + 𝑠𝑅𝐶1 ≈ 𝑠𝑅𝐶1 and the reason you 

can say that 𝜔𝑢 ≫ 𝜔𝑧. So, we have, 

|1 + 𝑗
𝜔𝑢

𝜔𝑧
| ≈

𝜔𝑢

𝜔𝑧
 

This is the approximation. If I do this approximation, then we get, 

𝜔𝑢 =
𝐼𝐶𝑃𝐾𝑉𝐶𝑂𝑅

2𝜋
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So, we have seen the loop gain of the PLL in order to calculate the phase margin of the PLL. This 

is equal to the separation between your actual phase and −180°. So, let me just redraw this where 

you start from −180° and after sometime this goes to −90°. So, given the 𝜔𝑢 frequency, this is 

the value which we need which is going to be, 

𝜑𝑚 = −180° + tan−1(𝜔𝑢𝑅𝐶1) − (−180°) 

𝜑𝑚 = tan−1(𝜔𝑢𝑅𝐶1) 

Now, the question is how to find 𝜔𝑢? Well, for unity gain frequency 𝜔𝑢, you have, 

|𝐿𝐺(𝑗𝜔𝑢)| = 1 

So, you find the 𝜔𝑢 from that loop gain expression or you can also write it as, 

|
𝐼𝐶𝑃𝐾𝑉𝐶𝑂(1 + 𝑠𝑅𝐶1)

2𝜋𝑠2𝐶1
|

𝑠=𝑗𝜔𝑢

= 1 

Now, here I can do one substitution by approximating the following: 

𝜔𝑢

𝜔𝑧
≫ 1 



⟹
𝐼𝐶𝑃𝐾𝑉𝐶𝑂𝜔𝑢𝑅𝐶1

2𝜋𝜔𝑢
2𝐶1

= 1 

Given this approximation, 

𝜔𝑢 =
𝐼𝐶𝑃𝐾𝑉𝐶𝑂𝑅

2𝜋
 

So, you can substitute this back here in the phase margin stuff and this is going to be your ICP 

KVCO by 2 pi into R divided into RC1. So, this will give you the phase margin for the PLL and 

looking at the plot, we know that the phase margin is greater than, or it is very close to 90 degree. 

So, this system is going to be quite stable. If you have a zero, that is why we earlier also introduced 

the zero to make the PLL stable. Thank you. 

So, you can substitute this back here in the phase margin and we get, 

𝜑𝑚 = tan−1 (
𝐼𝐶𝑃𝐾𝑉𝐶𝑂𝑅

2𝜋
𝑅𝐶1) 

So, this will give you the phase margin for the PLL and looking at the plot we know that the phase 

margin is close to 90°. So, this system is going to be quite stable if you have a zero, that is why 

we earlier also introduced the zero to make the PLL stable. Thank you. 

 

 

 


