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Welcome to this session. We would like to discuss the frequency domain insight behind 

frequency pulling. So, just enjoy these two frequency terms here. So, we have this mixer based 

phase error detector, then we have the loop filter with proportional and integral paths, and the 

VCO. So, we have already seen the time domain analysis. Now, we will look at the frequency 

domain for frequency pulling. 



So here, we have, 

At 𝑡 = 0, 𝜔𝑖𝑛 = 𝜔, 𝜔𝑜𝑢𝑡 = 𝜔𝑓𝑟 + 𝐾𝑉𝐶𝑂𝑉𝑐 = 𝜔𝑓𝑟 

So, the frequency error at the beginning is given by, 

∆𝜔(0) = 𝜔 − 𝜔𝑓𝑟 

Now, you have this frequency error, and we know that 𝑉𝑖𝑛 and 𝑉𝑜𝑢𝑡 are sinusoids. The error 

voltage is given by, 

𝑉𝑒 =
1

2
[sin((𝜔𝑖𝑛 + 𝜔𝑜𝑢𝑡)𝑡) + sin(∆𝜔(0)𝑡)] 

So, for this particular frequency error, let us look at the frequency spectrum of 𝑉𝑒. When you 

start your system at the beginning, you look at 𝑉𝑒 spectrum, 𝑉𝑒 versus 𝜔, and it has a component 

at ∆𝜔. I am neglecting sin((𝜔𝑖𝑛 + 𝜔𝑜𝑢𝑡)𝑡) component because I know that this is going to be 

filtered by the loop filter. So, we have 
1

2
sin(∆𝜔(0)𝑡) component. The loop filter which you 

are seeing here has two paths, namely, proportional and integral. The integral path will actually 

filter this out more or less most often if the frequency error is large. So, the proportional path 

is going to amplify this because the gain is finite for the proportional path. 

So, the proportional path has gain like this and the integral path has gain like this. So, integral 

path filters out and proportional path gain remains. So, what do you get at the output of the 

loop filter which is the 𝑉𝑐 node? You get the same frequency component, may be amplified 

with some value and this is ∆𝜔. So, that is what you have here. So, if you look at the magnitude, 

this is 𝐾𝑃𝐷 and here you have 𝐾𝑃𝐷 ×
𝜏𝑝

𝜏𝑖
. 

Now, when you have a frequency component at ∆𝜔, what happens to the control voltage? We 

will see it here. So, the control voltage is given by, 

𝑉𝑐 = 𝐾𝑃𝐷 sin(∆𝜔 𝑡) 

The output voltage is given by, 

𝑉𝑜𝑢𝑡 = cos (𝜔𝑓𝑟 𝑡 + 𝐾𝑉𝐶𝑂  ∫ 𝑉𝑐(𝜏)  𝑑𝜏) 

 



Let me just use another variable instead of t, let us say, 𝜏. This is just for integration purpose, 

so, this is what you have. If you look at this, the control voltage which you see here changes 

the VCO frequency and modulates the output signal. Now, how does it modulate the output 

signal? You need to do a little math here. So, we have, 

𝑉𝑜𝑢𝑡 = cos (𝜔𝑓𝑟 𝑡 + 𝐾𝑉𝐶𝑂  ∫ 𝐾𝑃𝐷  sin(∆𝜔. 𝜏)  𝑑𝜏) 

We assume that during the integration, ∆𝜔 remains constant because we are considering only 

one frequency. Hence, we get, 

𝑉𝑜𝑢𝑡 = cos (𝜔𝑓𝑟 𝑡 +
𝐾𝑉𝐶𝑂 𝐾𝑃𝐷

∆𝜔
 (− cos(∆𝜔. 𝑡))) 

You can forget the limits here for now. So, I am just doing indefinite integration, you can do 

definite integration also. The motive here is to find out how this control voltage is going to 

modulate 𝑉𝑜𝑢𝑡. So, actually there will be limits, you can do with that also, here I am just going 

to do it without the limits. So, there is no problem with that if you do with the limits or without 

the limits. The objective here is to find out how this will change the output voltage. So, you are 

having two components, one is 𝜔𝑓𝑟 𝑡 and the other component is 
𝐾𝑉𝐶𝑂 𝐾𝑃𝐷

∆𝜔
 (− cos(∆𝜔. 𝑡)). 
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So, we get, 

𝑉𝑜𝑢𝑡 = cos (𝜔𝑓𝑟 𝑡 −
𝐾

∆𝜔
 cos(∆𝜔. 𝑡)) 



Since, cos(𝐴 − 𝐵) = cos(𝐴) cos(𝐵) + sin(𝐴) sin(𝐵), so, we get, 

𝑉𝑜𝑢𝑡 = cos(𝜔𝑓𝑟 𝑡) cos (
𝐾

∆𝜔
 cos(∆𝜔. 𝑡)) + sin(𝜔𝑓𝑟 𝑡) sin (

𝐾

∆𝜔
 cos(∆𝜔. 𝑡)) 

Now, we assume here that 𝜃 =
𝐾

∆𝜔
 cos(∆𝜔. 𝑡) is very small. If we make this assumption, then 

we know that sin(𝜃) ≈ 𝜃, and cos(𝜃) ≈ 1. So, we get, 

𝑉𝑜𝑢𝑡 = cos(𝜔𝑓𝑟 𝑡) + sin(𝜔𝑓𝑟 𝑡)
𝐾

∆𝜔
 cos(∆𝜔. 𝑡) 

We are doing this for the first time but we will do these things multiple times in PLL, so that 

is why I am going through all the steps. So, you have, 

𝑉𝑜𝑢𝑡 = cos(𝜔𝑓𝑟 𝑡) +
𝐾

2 ∆𝜔
2 sin(𝜔𝑓𝑟 𝑡) cos(∆𝜔. 𝑡) 

Now, apply the identity, 2 sin(𝐴) cos(𝐵) = sin(𝐴 + 𝐵) + sin(𝐴 − 𝐵). So, we get, 

𝑉𝑜𝑢𝑡 = cos(𝜔𝑓𝑟 𝑡) +
𝐾

2 ∆𝜔
[sin ((𝜔𝑓𝑟 + ∆𝜔)𝑡) + sin ((𝜔𝑓𝑟 − ∆𝜔)𝑡)] 

So, when we modulate the control voltage of the VCO with frequency ∆𝜔, then at the output 

of the oscillator, 𝑉𝑜𝑢𝑡, we get two more frequencies, one is sin ((𝜔𝑓𝑟 + ∆𝜔)𝑡), and the other 

is sin ((𝜔𝑓𝑟 − ∆𝜔)𝑡). 
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So, this implies that I have more frequencies, and one of the frequencies is 𝜔𝑓𝑟 for the VCO as 

it was, and the other frequencies are 𝜔𝑓𝑟 + ∆𝜔 and 𝜔𝑓𝑟 − ∆𝜔 with magnitude 
𝐾

2 ∆𝜔
. So, this is 

𝑉𝑜𝑢𝑡. So, when we modulated the control voltage with a sine wave, the output of the oscillator 

gives rise to two more frequencies, 𝜔𝑓𝑟 + ∆𝜔 and 𝜔𝑓𝑟 − ∆𝜔. 

So, then it comes back at 𝑉𝑖𝑛. 𝑉𝑖𝑛 is still sitting at 𝜔𝑖𝑛, you did not change 𝑉𝑖𝑛, so 𝑉𝑖𝑛 is still at 

𝜔𝑖𝑛. What is 𝜔𝑖𝑛? You see from here that we have, 

𝜔𝑖𝑛 = 𝜔𝑓𝑟 + ∆𝜔 

This frequency is actually equal to 𝜔𝑖𝑛 only. So, when you multiply these two signals, one 

signal is having these three frequency components, the other signal is having only one 

frequency component, then this multiplication will give rise to more frequency components, 

and what are those more frequency components? Let us just see here. 

I just do not want that you take this downward arrow also as some frequency, so let me just 

avoid this and maybe use a little nicer arrow. So, you have this 𝜔 here, and  

𝜔𝑖𝑛 = 𝜔𝑓𝑟 + ∆𝜔. When these two frequencies combine, you are going to get the DC 

component. If you are wondering what I am doing, I am multiplying sin(𝜔𝑖𝑛𝑡) with sin(𝜔𝑖𝑛𝑡). 

If I do this, then this multiplication is sin2(𝜔𝑖𝑛𝑡) =
1

2
(1 − cos(2𝜔𝑖𝑛𝑡)). So, you get two 

components, one component is at higher frequency and the other component is at DC. So, this 

multiplication leads to a component at DC at 𝑉𝑒. 

You start with a non-zero DC component at 𝑉𝑒, to begin with, because there was no change, 𝑉𝑐 

was not there, then you come back in the loop and you see how the output frequency gets 

modulated, you produce a DC component. In addition to this, you will have components at ∆𝜔, 

2 ∆𝜔 and so on, but the important part is that you are having a DC component. And what is 

there at the output of 𝑉𝑒? There is a loop filter which has a proportional path and an integral 

path. The integral path has infinite gain at DC and you produce a DC component. So, if you 

produce a DC component at the input of the loop filter, the loop filter has infinite gain at DC, 

it will just amplify it, your control voltage will increase by a lot of margin and it is going to 

help you in compensating for the frequency error. 

So, this is another way of looking at the frequency acquisition. Previously, we looked at it 

completely in time domain. This time we looked at how these frequencies multiply to give you 



the DC component and that DC component gets amplified. So, this actually completes our 

frequency acquisition for the PLL and a similar procedure can be followed for different kinds 

of PLLs. We have only taken a simple example and you can use it for different PLLs. Thank 

you. 

 


