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Hello. Welcome to this session on PLLs. In the previous session, we talked about the acquisition 

ranges for PLLs. We discussed about hold-in range, lock-in range and pull-in range. Now, it is 

time to work out and see that how we can find the different ranges for the frequency acquisition in 



PLLs. By the way, when we are talking about the acquisition here, it is referring to frequency 

acquisition. 

So, we will continue with our simple PLL example, for the PLL which had the mixer followed by 

loop filter which was followed by VCO. We have been studying this example from the beginning. 

So, it is always good to figure out all the things related to that PLL. So here, 𝑉𝑖𝑛 and 𝑉𝑜𝑢𝑡 are as 

shown. I am repeating these things so many times that now you know by just looking at the model. 

So, we have, 

𝑉𝑖𝑛 = sin(𝜔𝑖𝑛𝑡) 

𝑉𝑜𝑢𝑡 = cos(𝜔𝑜𝑢𝑡𝑡) 

We are going to find out the different frequency acquisition ranges for this particular PLL. This is 

𝑉𝑒𝑟, this is 𝑉𝑐. Now, in this case, we have worked out earlier that the error voltage is given by, 

𝑉𝑒𝑟 =
1

2
[sin((𝜔𝑖𝑛 + 𝜔𝑜𝑢𝑡)𝑡) + sin((𝜔𝑖𝑛 − 𝜔𝑜𝑢𝑡)𝑡)] 

Now, in this case, to begin with, we need to find out the frequency acquisition ranges. So, we have, 

let us say, 

At 𝑡 = 0, 𝜔𝑖𝑛 = 𝜔, 𝜔𝑜𝑢𝑡 = 𝜔𝑓𝑟 + 𝐾𝑉𝐶𝑂 . 𝑉𝑐 

Since 𝑉𝑐 = 0, we get, 𝜔𝑜𝑢𝑡 = 𝜔𝑓𝑟 

If that is the case, we have a frequency error between 𝜔𝑖𝑛 and 𝜔𝑜𝑢𝑡. So, I will write that as, 

∆𝜔 = 𝜔𝑖𝑛 − 𝜔𝑜𝑢𝑡 = (𝜔 − 𝜔𝑓𝑟) − 𝐾𝑉𝐶𝑂 . 𝑉𝑐 

This is what we have. Now, given this frequency error, we know that the phase error at any given 

time is given by, 

𝜑𝑒𝑟(𝑡) = ∫{∆𝜔(0) − 𝐾𝑉𝐶𝑂 . 𝑉𝑐} 𝑑𝑡

𝑡

0

 

where, 𝜔 − 𝜔𝑓𝑟 = ∆𝜔(0) 



Now, in this particular example, you know what the phase error for this is. We know that the PLL 

will be locked when the rate of change of phase error with respect to time is equal to zero. Thus, 

we have, 

𝑑𝜑𝑒𝑟(𝑡)

𝑑𝑡
= 0 

Now, we have, 

𝑑𝜑𝑒𝑟(𝑡)

𝑑𝑡
= 𝜑𝑒𝑟̇ = ∆𝜔(0) − 𝐾𝑉𝐶𝑂 . 𝑉𝑐 

And what is 𝑉𝑐 in our case? You are using a loop filter. So, if we are using a low pass filter with R 

and C like this, where the filter bandwidth is larger than the frequency error which we have, then 

in that case, I can write 𝑉𝑐 at any given time as follows: 

𝑉𝑐 =
1

2
sin(𝜑𝑒𝑟) 

where, 
1

2
= 𝐾𝑃𝐷, the phase error detector gain. 

So, writing it again from the phase error derivative equation, we get, 

𝜑𝑒𝑟̇ = ∆𝜔(0) − 𝐾𝑃𝐷𝐾𝑉𝐶𝑂 sin(𝜑𝑒𝑟) 

So, your PLL is going to lock only when you have a solution for this equation. So, what I will do 

is that I will try to find the solution of this equation. Now, you see, here we are taking the derivative 

of the phase error and phase error is in the argument also. 

So, to find the solution, one easy way will be that if I look at the metric, 
𝜑𝑒𝑟̇

𝐾
, and equate it to zero, 

which is given as, 

𝜑𝑒𝑟̇

𝐾
=

∆𝜔(0)

𝐾
− sin(𝜑𝑒𝑟) = 0 

If I find the solution for the phase error, then I can say I have a solution. Here, 𝐾𝑃𝐷𝐾𝑉𝐶𝑂 = 𝐾. So 

now, just see if you have a solution. So, I am going to plot 
𝜑𝑒𝑟̇

𝐾
 with respect to the phase error. 



So, with respect to phase error, 
𝜑𝑒𝑟̇

𝐾
, you see that you are having − sin(𝜑𝑒𝑟) here. So, ∆𝜔(0) is the 

initial frequency error which you have, and 𝐾 is constant. So, this is quite simple. So, what you 

will see here is, you will have inverted sine shifted by 
∆𝜔(0)

𝐾
. So, what you are going to see here is, 

my plot may not be the exact sin wave but that is what you are going to see. Here, whatever shift 

you are seeing, this shift is nothing but 
∆𝜔(0)

𝐾
. So, in order to find the solution for the above 

equation, we need to just know wherever this variable is equal to zero and we see that you are 

seeing two such points, one is this, the other is this. 
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So, the equation 
𝜑𝑒𝑟̇

𝐾
= 0 has two solutions as shown in the plot. I call this as N1, the left one, and 

the right one, I call as N2. We are not making any approximations in the solution here. So, there 

are two solutions N1 and N2, nulls N1 and N2. We need to find out which is the stable solution. So, 

whenever you solve for some roots, you always validate whether the roots are correct in any given 

equation or whether the solutions hold. So, in this particular case, you see that there are two 

solutions, N1 and N2. The other thing which you also observe is that the two solutions which you 

are seeing exist only when 
∆𝜔(0)

𝐾
 is some particular value. You may not have solutions always. If 

you take this up, the shift is on the upside, then you will know that sin(𝜑𝑒𝑟) is going to limit the 

nulls at this point. You are going to have solutions only when, 

𝜑𝑒𝑟̇

𝐾
≤ 0 ⇒

∆𝜔(0)

𝐾
≤ sin(𝜑𝑒𝑟) 

At max, sin(𝜑𝑒𝑟) can be equal to 1. So, we get, 

∆𝜔(0)

𝐾
≤ 1 

So, a solution exists only under this condition, but there are two solutions. So, the question is, 

which solution is the correct solution here or both are correct or one of them is correct. If one of 

them is correct, then, which one is correct. To find that out, what you need to do is, you need to 

look at this curve. So, let us look at it, one by one. 
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From our solutions, we see that there are two things which we need to find out which we need to 

make sure that a solution exists for the above plot. The first thing is given as, 

𝜑𝑒𝑟̇

𝐾
=

∆𝜔(0)

𝐾
− sin(𝜑𝑒𝑟) ≤ 0 

Only then, you will find that there are solutions. And this will happen only if, 

⟹
∆𝜔(0)

𝐾
≤ sin(𝜑𝑒𝑟) 

This means that there is an upper limit on the frequency error which you can have, which is 𝐾. 

sin(𝜑𝑒𝑟) at maximum will be equal to 1. So, we get, 

∆𝜔(0) ≤ 𝐾 

A similar limit exists on the other side of 𝜔 input. The other thing which we see from here is that 

there are two solutions including null N1 and null N2. Which of these solutions is a stable solution? 

That is something which we need to figure out. So now, let me just plot what we have seen before, 

in a little bit amplified manner. So, I have this thing here, I will just plot it here. So, what I am 

plotting is, as you see in the previous page, this is 
𝜑𝑒𝑟̇

𝐾
. 

 

 



There are two solutions as I told, one is null N1 and the other is null N2. So, let us look at the 

solution, null N1. So, for this particular phase error, I call this as 𝜑𝑒𝑟(1), for this particular phase 

error, you see that the derivative of the phase error is equal to 0. So, you may think that this is a 

solution. Now, a solution is a stable solution only if you make any disturbance to the system at this 

particular phase error, the system returns back to N1. 

If you are looking at the stability, so I will just give you another example that this particular system 

here, let us say, if you have a ball in the valley and you move this on either side, it will come back 

to the center position. So, the ball is actually stable in the valley at this point. Similarly, if you 

have a hill and you keep a ball here and you make a small disturbance in the system, it will either 

roll this way or roll the other way. So, the ball here is not in equilibrium, it is not stable whereas a 

ball here, in this case, is stable. A similar analogy will apply here. 

If N1 is a stable solution or 𝜑𝑒𝑟(1) is a stable solution, then in this particular case, we make a small 

disturbance at N1 position. So, how are we going to make a small disturbance at N1? At N1, I apply 

the following: 

𝜑𝑒𝑟 = 𝜑𝑒𝑟(1) + ∆𝜑 

So, you make a ∆ change in the phase, you can apply that disturbance. If you apply the disturbance, 

then looking at this particular curve, what you see is that the derivative of the phase error is 

negative, that is, 𝜑𝑒𝑟̇ < 0. So, you increase the phase error, but the slope of the phase error is 

actually negative with respect to the phase error. 𝜑𝑒𝑟̇  is actually negative with respect to time. So, 

phase error will reduce. I hope you understand this part. At null N1, if this is a solution, then you 

know, 

At 𝜑𝑒𝑟(1), 𝜑𝑒𝑟̇ = 0 

But at 𝜑𝑒𝑟 > 𝜑𝑒𝑟(1), it is like you make a disturbance, you add this ∆𝜑, what happens is, because 

the derivative of the phase error is negative or the slope is negative, you will reduce the phase 

error. 

So, if I have a variable, 𝑥, and let us say, we have, 



𝑑𝑥

𝑑𝑡
< 0 

It implies that 𝑥 reduces with respect to time and the slope is negative. Similarly, I made a change 

to the phase error or I applied a small disturbance at N1. But, because the slope at 𝜑𝑒𝑟(1) + ∆𝜑 is 

negative, so, the phase error will drop. If the phase error drops, what will happen? It will come 

back to N1. Similarly, if you make a small disturbance on the negative side, and 𝜑𝑒𝑟 = 𝜑𝑒𝑟(1) −

∆𝜑, since 𝜑𝑒𝑟̇ > 0, the phase error will increase. The phase error increases which means you come 

back to N1. So, N1 is a stable solution here because if you make any disturbance in this particular 

case, it moves back to the same point. 

Now, on the other side, you look at N2. If you look at N2, then I call this solution as 𝜑𝑒𝑟(2). 

At 𝜑𝑒𝑟(2), 𝜑𝑒𝑟̇ = 0 

So, it appears to be a solution. But if 𝜑𝑒𝑟 changes from 𝜑𝑒𝑟(2) to 𝜑𝑒𝑟(2) + ∆𝜑, so, I made a small 

change on this side, the slope of the phase error is actually greater than zero. You move from zero, 

the slope is positive. If the slope is positive, what will happen? The phase error will increase. So, 

you move away from node N2. Similarly, if the phase error changes from 𝜑𝑒𝑟(2) to 𝜑𝑒𝑟(2) − ∆𝜑, 

because 𝜑𝑒𝑟̇ < 0 on this side, the phase error will reduce. That means, you go away from N2. So, 

N2 is not a stable solution. 

So, what you see here is that two solutions exist. Two phase error values exist which give you the 

derivative of phase error equal to zero or you can say two solutions exist, even when you start with 

a frequency error in the PLL. But out of those two solutions, only one solution is stable. So, you 

may start your PLL, it may start with zero or some other point. Finally, it will come to N1, in this 

particular scenario. 

Now, there is one other important thing. I have not drawn the full sine wave but if you look at it, 

you will see a sine wave, because I can plot, there is nothing which is restricting me on how much 

of the phase error value I can plot. So, I can plot for many values. Here you see that these solutions, 

N1 and N2, they do not exist only at two particular points in this plot, but there are many such 

points.  



Sine wave is periodic in nature and you see many solutions. An important observation here is that 

between every two peaks, there exist two solutions, given by N1 and N2. Out of those two solutions, 

only one is stable. Why is it important? It is important that when you start the PLL, you can start 

from any phase error. I can start from here, I may start from here or I may start from only this 

point, maybe sometimes I start from here. These are the initial phase offsets which you can start 

with. So, if I call this as 𝜑𝑒𝑟(0), this can also be 𝜑𝑒𝑟(0). Well, this can also be 𝜑𝑒𝑟(0) and this can 

also be 𝜑𝑒𝑟(0).  

So, you can start from any point. The important thing here is that no matter which point you start 

from, your signal will change in the PLL and finally, you will find a solution at N1. If you start 

from this particular point, then you will again find a solution at this point, I call this as a N1′. So, 

within every 2𝜋 phase difference, that is, within every two peaks, you see that there exists a 

solution. So, this span is 2𝜋 and within this 2𝜋 span, you see there are two such nulls and the stable 

null is this particular one. You look for the other one, if you start anywhere between, if at this point 

or this point, you have a solution here. 
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What does it mean? It means that if  
∆𝜔(0)

𝐾
≤ 1, there exists a solution for −𝜋 + 𝜑𝑜𝑠 ≤ 𝜑𝑒𝑟 ≤ 𝜋 +

𝜑𝑜𝑠. So, there is always a solution in this range of 2𝜋. So, if you start your PLL with initial 

frequency error and a solution exists, then your PLL will always lock and it will lock with phase 

error without exceeding 2𝜋. 

So, this is important. In this Type-I PLL which we have been discussing, given the frequency error, 

if there exists a solution which will be limited by 
∆𝜔(0)

𝐾
≤ 1, then, the PLL will always lock without 

the phase error exceeding 2𝜋. This means that the phase error does not exceed 2𝜋 and the PLL 

locks. So, the lock-in range is given as, 

∆𝜔𝐿 = 𝐾 = 𝐾𝑃𝐷 𝐾𝑉𝐶𝑂 

This is the lock-in range of the PLL. I will demonstrate this with the help of simulations which 

you have also seen before but not in this particular context directly. So, let me show what we mean 

here. 
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In the first case, we have the initial frequency error as given by ∆𝜔(0) = 2𝜋 × 5 Mrad/s. So, the 

important part here is that the phase error is small and in this particular example, I was using the 

lock-in range, ∆𝜔𝐿 = 2𝜋 × 50 Mrad/s. So, this was the lock-in range given by 𝐾𝑃𝐷 𝐾𝑉𝐶𝑂. 

So, what you see here is that the phase error starts from zero, this is the phase error, it starts from 

zero and it settles to a value. It does not go close to 2𝜋 at all. The phase error does not even reach 

2𝜋. It settles because the frequency error was small. 

Then, when I increase the frequency error, what happens? In this case, I increase the frequency 

error from 10 𝜋 Mrad/s to 80 𝜋 Mrad/s. So, this is 2𝜋 × 40 Mrad/s. I increase the frequency error 

to this value. And what you see here is that the phase error increases and it actually settles. This 

also does not increase more than 2𝜋. 

You have seen the error voltage in both the cases earlier, but the important point which you now 

observe is that the PLL locks without the phase error exceeding 2𝜋. Now, what happens if the 

phase error exceeds 2𝜋? Let me show you. 
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So, I am showing you for two different cases as given below.  

∆𝜔1(0) = 2𝜋 × 49 Mrad/s 

∆𝜔2(0) = 2𝜋 × 51 Mrad/s 

This is the frequency error, the one which you see here is for the red one, where you see that this 

particular red one is the case for ∆𝜔1(0) and this one is the case for ∆𝜔2(0), these are the phase 

errors. So, this one is for ∆𝜔1(0) and this one is for ∆𝜔2(0). So, what you see here is that in closed 

loop, for the first case, ∆𝜔1(0), the phase error starts from zero because the initial offset was zero 

and it reaches to this value which is 0.2181 × 2𝜋. It does not reach 2𝜋 at all, whereas in the second 

case which you see, the phase error value is 1.25 × 2𝜋. So, the phase error exceeds 2𝜋 because 

the phase error is larger than the lock-in range. 

So, there were two conditions which we initially told that 
∆𝜔(0)

𝐾
≤ 1 and that there always exists a 

solution within the phase error of 0 to 2𝜋. If you exceed that, the PLL will not even lock. So, that 

is something which we saw here using three different examples. The first example was of a low 

frequency error, then you had a little larger frequency error and then very close to the lock-in 

range. 

So, for the case in which the frequency error is very close to the lock-in range, you see that the 

phase error exceeds 2𝜋 and the PLL does not lock. How will you make sure that the PLL does not 



lock? The corresponding error voltage is shown at the bottom and you see that the corresponding 

error voltage does not settle, it just keeps on repeating. Why is it doing this kind of weird behavior 

is something which we will check out. 

You would want to understand the case in which there exists no solution. Well, you have already 

seen the plot where  
∆𝜔(0)

𝐾
> 1, then, in that particular case, you may see the same plot, 

𝜑𝑒𝑟̇

𝐾
, as 

something like this. You do not see this particular plot crossing 𝜑𝑒𝑟 axis at all. So, there exists no 

solution. Thank you.   

 

 


